

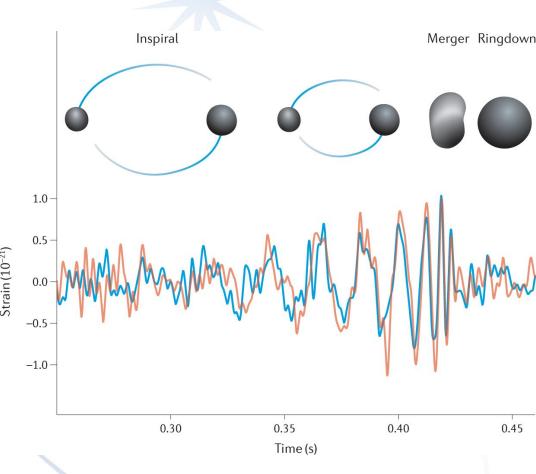
Dockerfile to extract Gravitational Wave data from the ESCAPE Datalake

ESFRI

Rhys Poulton

E-OSSR Onboarding Presentation

Date



Introduction

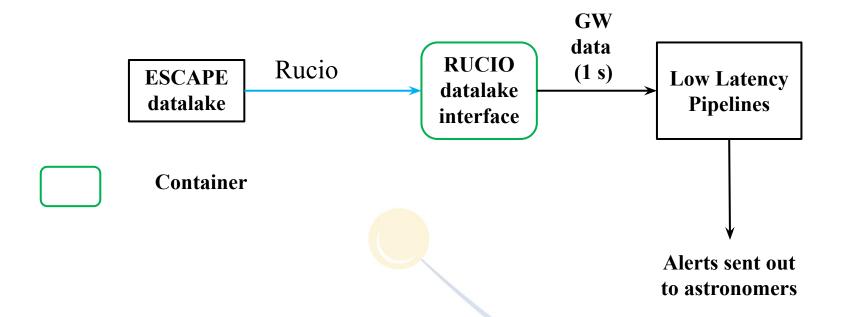
In Gravitational Waves (GW) we have data constantly streaming Low Latency pipelines from the detectors

> Low Latency pipelines looking for a GW signal looking for a GW signal

Once a signal is detected an alert is sent out to other observatories

Introduction

- To test these data it requires a constant stream of data from LIGO Hanford, LIGO Livingston and VIRGO
 - Data streams in 1 m/s
 - Requires a full observing run 40 days
 - 3.3 TB worth of data



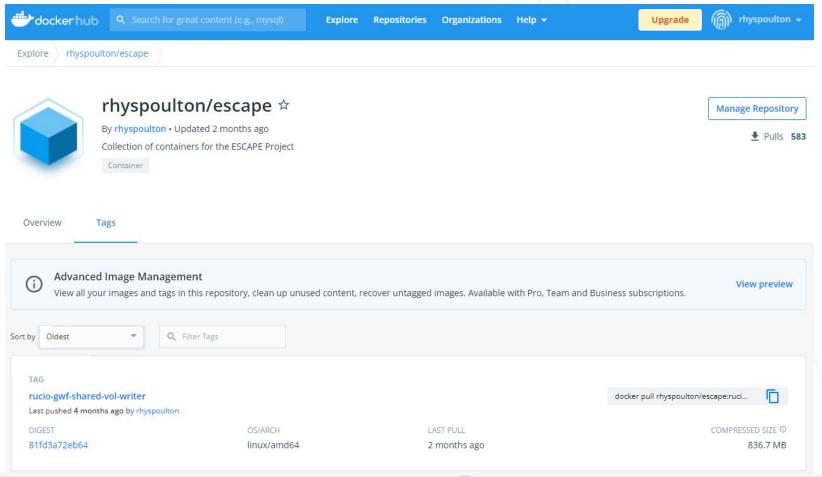
Introduction

 We would like to have this data available in the ESCAPE Datalake and being streamed to the low latency pipelines

Software/Service Development – 2 slides

- Software Development Lifecycle Strategies
- Development: coding styles, versioning, maintenance, documentation, software quality standards
- Testing and efficiency optimization strategies
- platform integration and metadata (choices)
- software licenses
- General guidelines that are followed

Software/Service Development


- Available on gitlab:
 - * https://git.ligo.org/rhys.poulton/escape-datalake-share d-volume-writer

- GPL 3.0 License
- Standard software development procedure will be followed
 - * User fork -> merge request into the master branch

Software/Service Development

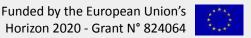
Deployed on Dockerhub

Software/Service Development

- Documentation available on the zenodo release:
 - * https://zenodo.org/record/5742053

Software/Service Requirements

Requirements


* Docker or Singularity instance

* Ideally Kubernetes cluster

OSSR Integration

- What is available?
 - Source code
 - Docker container
- What will be onboarded (source code, container, test workflow incl. data)?
 - Source code for container
 - Container image

OSSR Integration

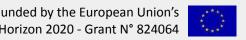
- What is the "user story" of a EOSC user taking on the software/service?
 - This means any of the low latency pipelines can take this container and use it to stream data to test the pipeline
 - The user can decide where the data is located from the docker mount
 - It is planned to support the low latency pipelines in the OSSR
 - * WAVEFIER already in OSSR: https://doi.org/10.5281/zenodo.3356656
 - * Coherent WaveBurst in the process: https://doi.org/10.5281/zenodo.5798976

Time for a short demo (~10 min)

- Show how the software is used and what is the outcome
- What should and can a EOSC user do with the software?

Open Points and Discussion Time

- Which of your questions have not been covered so far?
- What do you want to discuss?



TOC of Tech Report

- Introduction
 - ESFRI/RI and Partner, Science Case
 - Software and Service Name
- Software/Service Development Strategy
- Software/Service Requirements
- OSSR Integration
 - Status
 - Content
 - User Story

