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Introduction
• The top-quark has been observed and studied so far only at hadron colliders (Fermilab, LHC). 
• At the LHC, high energy and the large luminosity => large statistics of 𝑡 ̅𝑡 events. 

• Precisions at hadronic colliders can be limited by pile-up, background contaminations or          
𝒕𝒕̅ modelling (hadronization, colour reconnection, extra jets etc…).

• The scientific relevance of lepton colliders for top quark physics has been studied, in the 
context of linear (ILC, CLIC) and circular (FCCee, CEPC) colliders. 

• 𝑒!𝑒" colliders are expected to provide extremely precise measurements. Some examples are 
discussed here, with a focus on FCCee.

• Outline:
• Top quark physics at (FCC)ee colliders,
• Beam backgrounds and beam effects,
• 𝑡 ̅𝑡 cross section and top quark mass,
• Indirect searches for new physics from top-quark EWK couplings.
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Top quark physic at 𝒆!𝒆" colliers
• Physics program at lepton colliders  <=> 

precision !
• Low backgrounds,
• Knowledge of the initial state,
• Detectors with very high resolutions.

• Above 𝒕𝒕̅ threshold (differential) cross 
sections sensitive to :
• top quark mass 𝒎𝒕, top quark width 𝜞𝒕,
• Couplings 𝒕𝒕̅𝒁 and 𝒕𝒕̅𝜸 , but also couplings to Higgs 

(𝒕𝒕̅𝑯), 𝑦"
• 𝜶 and 𝜶𝒔.

• At 𝒕𝒕̅ threshold : non relativist effects and 
cross section enhancement.
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𝒕𝒕̅ decay channels : pp vs ee
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• Heaviest particle known so far.

• Decays before hadronises =>  top quark can be reconstructed 
precisely from decay products.

• Decays almost entirely into a 𝑊 boson and a 𝑏-quark.

• At the LHC :
• Dileptonic channels are clean, precise inclusive xs => low backgrounds 

contamination and large luminosity compensate the lower Br, event 
reconstruction difficult,

• Full hadronic challenging because of the large QCD- multijet background, 
• Semi-leptonic channel shows a good compromise.

• At lepton colliders : 
• small backgrounds for all channels, mainly from WW,
• higher selection efficiency,
• precise knowledge of the initial state = more precise events reconstruction.

LO 𝑒!𝑒" LO pp



𝒕𝒕̅ runs (at FCCee)
• Lepton colliders schedules : run at different 

collision energies.

• Top quark physics program in two steps :
• Scan energies from ~340 to ~350 GeV,  0.2 
𝑎𝑏!" in total,

• Large statistic run at 365 GeV, 1.5 𝑎𝑏!".

• At 365 GeV, ~2 Mevts in total. 

• 1-2 orders of magnitude lower during the 
scan.

• Important to identify dominating systematics 
è improve detector design, analysis and run 
plan.
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Beam characteristics 
and impact on 𝒕𝒕̅ at FCCee

• There is some beam energy spread at 𝒕𝒕̅ thresholds.

• Beam energy spread (BES) systematics.
• beam energy (spread) measured with dimuon-events at top energies to very 

precise values,
• high muon resolution required.

• BES can be adjusted with machine optimisation.

• At FCCee : relatively narrow and no tails toward lower energies
• Beamstrahlung effects on beam profile small, energy loss recovered by RF.

• Impacts of energy spread on the 𝑡 ̅𝑡 threshold scan : broader ”turn-
on” 

• Other beam dependent effects 
• ISR => lower effective cross sections, 
• FCCee in a favourable position regarding BS.
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𝒕𝒕̅ cross section and 
top quark mass
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Precision of 𝒕𝒕̅ cross section measurements
• Inclusive and differential => probe of 𝒕𝒕̅𝑍 and 𝒕𝒕̅𝛾 couplings (EFT related).

• Dominant backgrounds (lepton+jets):
• WW(dominant)/ZZ
• WWZ, ZH => more difficult to reject, but much lower cross section (/20).

• Events selection :
• one (relatively loose) isolated lepton with 𝐸>10 GeV, 80-90% efficiency,
• 4 jets reconstructed using an exclusive algorithm (VLC),
• b-tagging requirements,
• jets and lepton association to top-quark,  with a kin-fit (W and top mass, initial state!).

• Overall efficiency >70% can be achieved (JHEP 11 (2019) 003), very high purity 
(>90%).

• Target systematics ~few % (even below ?)
• physics backgrounds very small,
• High selection efficiency : related to detector performance (lepton/jets selection, flavour 

tagging) => impact on acceptance and modelling uncertainties.
• Excellent control of selection efficiencies (from data).

8

1.0 ab-1 at 380 GeV (CLIC)



𝒎𝒕

𝜶𝒔
𝒚𝒕

𝚪𝒕

CDR 
FCCee

Top mass measurement from threshold
• Top mass measurement from cross sections => resolving top mass 

“ambiguities” : MC mass vs mass in various renorm. scheme. 

• Typical mass difference in the various renorm. schemes ~200 MeV.

• Mass extracted from various cross section measurements while 
scanning 𝑠 , and then compared to theoretical predictions.

• Cross section measurement precision : 1-2% to reach <200 MeV. 
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• Expected precisions (CLIC analysis revisited for FCCee):
• Stat uncertainty at ~15 MeV,
• Beam energy, reconstruction efficiency and background contamination ~50 MeV ,
• Luminosity ...  ~10 MeV,
• Strong dependence on 𝛼! in the interpretation,
• Total uncertainty below 100 MeV, previous measurements of 𝛼! => reduction to < 50 MeV could be achievable!

• Experimental uncertainties (close to be) dominated by statistics is possible at the FCCee ! 

• Direct top-quark mass measurements below 200 MeV also possible.



Direct measurement of top mass 
from decay products (above threshold)

• Direct mass measurement from top quark decay products (in a nutshell):
• reconstruct and identify decay products,
• reconstruct top quarks candidates using a kin fit (determine jets-lepton associations),
• fit the reconstructed top mass with templates issued from MC generation. Simultaneous 

fit with JES reduces systematics,
• requires “calibration” : input  𝑚"

#$ ≠ 𝑚"
%&'(.

• Comparisons with CMS top reconstruction at 13 TeV, 35.9 𝑓𝑏!".

• Estimations of the uncertainties (CLIC@380 GeV) :
• stat: 30-40 MeV for 1𝑎𝑏)*,
• moderate impact of JES : 2% variation of light and b jets = 200 and 350 MeV,
• JES related uncertainties can be greatly reduced by including the perfect knowledge of 

the initial state into the events reconstruction,

• Direct top mass measurement can be competitive with the threshold scan 
measurement.
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EWK couplings in 𝒕𝒕̅ and 
search for new physics
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Search of new physics through EFT
• Search for new physics through EFT.

• Thanks to high precision, lepton 
colliders are able to very significantly 
improve the sensitivity.
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New vertices arise from the contributions of new particles (new 
physics) living at the loop level.

If the new particles are heavy enough => modelling of the loop by a 
new interaction vertex.

JHEP12(2019)098



Top-quark EFT : polarization vs 
statistics

• At linear colliders, to constrains EFT operators
• beams polarization give an extra handle,
• high energies can help to improve the sensitivity on some couplings, especially in 

multi-parameter fits,
• Statistics help to improve the sensitivity.

• Investigating EFT at FCCee (no polarisation, 365 GeV) :
• Lower beam backgrounds and less ISR at lower energies,
• Lower single top background at 365 GeV compared to 500 GeV,
• Large statistics ( for instance ~factor of 2 compared to the 500 𝑓𝑏!" ILC scenario).

• Sensitivity on (anomalous) 𝑡 ̅𝑡 EWK couplings at FCCee. Based only 
lepton energy and polar angle :

• low expected experimental uncertainties,
• dominated by stat. uncertainties.
• è high constrains even without polarisation. 

• Unpolarized beam can still lead to strong constrains on top EWK 
couplings.
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Sensitive to lumi projections ! 
Comparisons to be made with care. 

https://arxiv.org/ct?url=https%3A%2F%2Fdx.doi.org%2F10.1007%2FJHEP10%25282018%2529168&v=2cea83c3


Top quark couplings to bosons
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• Top-quark Flavour Changing Neutral current => clear sign of new physics.

• Top-quark FCNC couplings can probed in 𝑡 ̅𝑡 with 𝑡 → 𝑋𝑞 (X = 𝛾, 𝑍, 𝐻 and 
𝑞 = 𝑢, 𝑐), but also in single top signatures.

• Single top production possible for 𝑡𝛾 − and 𝑡𝑍-FCNC, already accessible 
at 𝑠 = 240 𝐺𝑒𝑉.

• Very promising channels : higher cross section than 𝑡 ̅𝑡 , limited by 
statistics and background contamination (Wjj),  

• Ultimately : combination of single top and 𝑡 ̅𝑡 channels (𝑡 ̅𝑡 channels still 
useful to disentangle 𝑡𝛾 from 𝑡𝑍).

• Large impact of b and c-tagging.

PLB 775(2017) 25-31
New results coming !



Detector impact on flavour tagging

• Flavour (b/c)-tagging is a key element for 
top quark physics.
• 𝜀""̅ ∝ 𝜀/0,
• Top-FCNC , 𝑡 → 𝑐𝐻(𝑏4𝑏), 𝜀"12 ∝ 𝜀/0𝜀2.

• B-tagging and c-tagging performances for 
various single point resolutions.

• From 7𝜇 to 3𝜇: 
• 𝜀/: ~8%(abs.)  improvement at 𝜀3 ≈ 1%,
• 𝜀2: ~18%(abs) improvement at 𝜀3 ≈ 10%.

• Physics performance ó detector designs.
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Conclusion
• The top-quark physics program at lepton colliders is rich.

• Large improvements of precisions measurements and 
sensitivity to new physics.

• FCCee will deliver a large luminosity, with excellent beam 
conditions and low background contaminations, but top 
quark physics is very relevant at any 𝒆!𝒆" colliders !
• Linear collider (not so much discussed here) also very relevant ! 
• Strong benefit from polarisation, but can be compensated by statistic.

• A significant effort should be invested in increasing the 
maturity of FCCee analyses, with a strong interplay with 
detector performance related studies.

• Collaborations between ILC, CLIC, CEPC and FCCee very 
beneficial and important !
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Beam backgrounds at 𝒕𝒕̅ threshold

• Beam Backgrounds :
• 𝛾𝛾 → ℎ𝑎𝑑𝑟𝑜𝑛𝑠 found to be negligible,
• Synchrotron Radiation (SR) from last bending magnet,
• Incoherent Pair Creation (IPC, 𝑒4𝑒5 pair via interaction with beamstrahlung).

• Effects estimated from full simulation, impact on the CLD vertex 
detector shown.
• SR largely reduced by shielding : #hits/BX reduced by 2 order of magnitude 

to achieved 700 hits/BX (<40 extra MeV per bunch crossing), 
• IPC contribution significant (especially in first layers), but moderate => 

acceptance choices.
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Discussions on backgrounds
• List of the main background and cross 

sections.
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Beam backgrounds (large angle) M.Dam link

https://indico.cern.ch/event/727555/contributions/3475889/attachments/1868136/3073178/LumiFCCWeek.pdf


Interacting points
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Top mass : target

• Objectives of top mass 
measurement :
• Test of the SM, yukawa couplings and 

top mass,
• Confront pole mass to the “MC” mass 

(differences of a coupe f hundreds 
MeV),
• Study of the stability of the vacuum, 

differentiations between stable and 
meta-stable universe.
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Beam background
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Rates of electron pair backgruonds
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Status top FCNC at LHC
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Do we need a trigger at 𝒕𝒕̅ threshold ?
• Trigger (at least software) might be foreseen for the Z run.
• Effects of trigger selection on analysis (my LHC bias) :

• Could cause lower signal efficiencies ?
• Systematics on the trigger efficiency ?

• At FCCee : mainly to reject beam-backgrounds, we want to keep all physic 
backgrounds (physics, alignment, calibrations and efficiencies measurements 
etc…).

• Rate of bunch crossing at 𝑡 ̅𝑡 (back of the envelop) : ~3000 ns of bunch spacing 
=> ~300kHz, that is ~3 times the actual CMS/ATLAS L1 trigger rate, but half of 
the HL rates. 

• Can/should we avoid L1 and/or HLT triggers ? 

• (Naïve) questions to answer :
• What is the rate of beam backgrounds ?
• What is a typical size of an event ?
• What is the needed readout speed and disk throughput ?

• At minima : low trigger requirements to detect a collision (a la LEP). Trigger 
systematics should be small !
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General (naïve) comments 
on detector design “optimisation”

• Needs (resolutions, efficiencies etc…) for top quark physics are probably very similar to the Higgs 
physics, at first order.

• We need to verify this assumption at 𝑡 ̅𝑡 threshold (different beam conditions and backgrounds)!

• Some of this work already done for CLD/IDEA : do we want to join effort there, or create our own design? 
A lot to learn from ILC/CLIC here as well !

High involvement required  !
28

Detector 
Design

Reconstruction 
Algorithm

Physics 
performance

• Tools needed for Physics performance studies :
• FastSim => interesting to test sensitivity on detector 

performance, but rapidly limited,
• FullSim => ultimately needed, but takes time, need (flexible) 

reconstruction,
• Intermediate approach with some modelling ? Partial fullsim 

(not entire detector) to feed fastsim?

• Developments need to proceed in parallel.

• Enough work on all topics to keep us busy for years.
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Franco Grancagnolo, FCC-France link

https://indico.in2p3.fr/event/20792/contributions/81817/attachments/58694/78952/FCC-ee_France_compressed.pdf


Beam backgrounds at 𝒕𝒕̅ threshold

• Beam Backgrounds (CDR) :
• 𝛾𝛾 → ℎ𝑎𝑑𝑟𝑜𝑛𝑠 found to be negligible,
• Synchrotron Radiation (SR) from last bending magnet,
• Incoherent Pair Creation (IPC, 𝑒!𝑒" pair via interaction with beamstrahlung).

• Effects estimated from full simulation, impact on the CLD vertex 
detector shown.
• SR largely reduced by shielding : #hits/BX reduced by 2 order of magnitude 

to achieved 700 hits/BX (<40 extra MeV per bunch crossing), 
• IPC contribution significant (especially in first layers), but moderate => 

acceptance choices.
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Generators : aMC@NLO and Whizard
• Having “state-of-the-art” generators is a key element for precisions

• Maximum possible accuracy : NLO QCD+QED, 
• NLL+NLO matching : differential cross sections at threshold, effects of 𝑠 on kinematics,
• Account for the beam effects discussed above,
• We need at least 2 generators to perform comparisons,
• Two generators under investigations : Whizard and aMC@NLO.

• Both generators contains most of the key elements (in a not-yet public release for 
aMC@NLO link) :
• NLO accuracy, Whizard : QCD+QED, MadGraph :QCD (QED under developments for e+e-),
• Initial State (QED) Radiation, both,
• Beamstrahlung : Whizard : interface with GuineaPig/CIRCE. MadGraph : parametrization fitted to 

GuineaPig++.
• Beam Energy Spread : Whizard : Gaussian smearing in case of FCCee, Madgraph : not available yet.
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https://indico.in2p3.fr/event/20792/contributions/81843/attachments/58745/79000/durieux-fccfrance-15may2020.pdf

