New top results on HL-LHC for Snowmass

Input from the ATLAS and CMS Collaborations

Nedaa-Alexandra Asbah

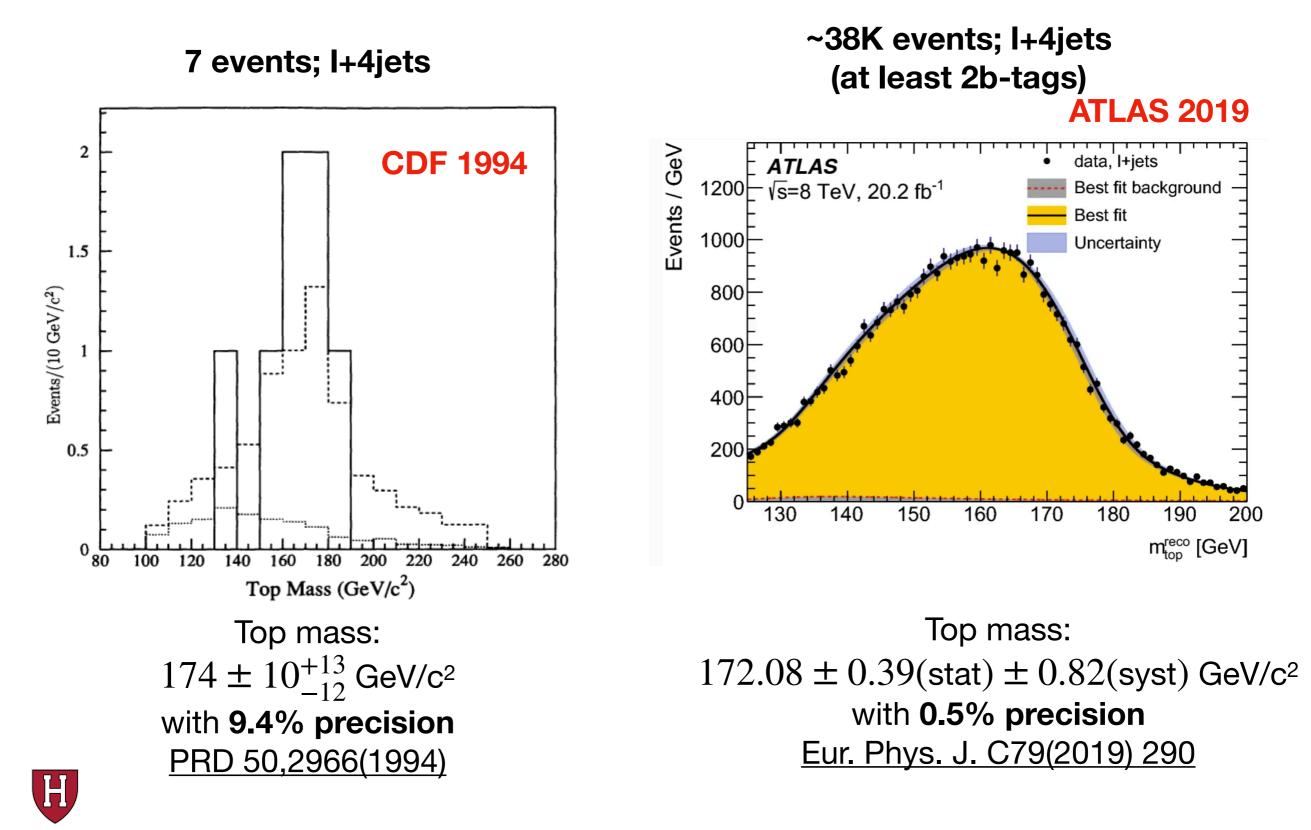
Top LHC France 2022- Lyon 10.05.2022

2

What is Snowmass ?

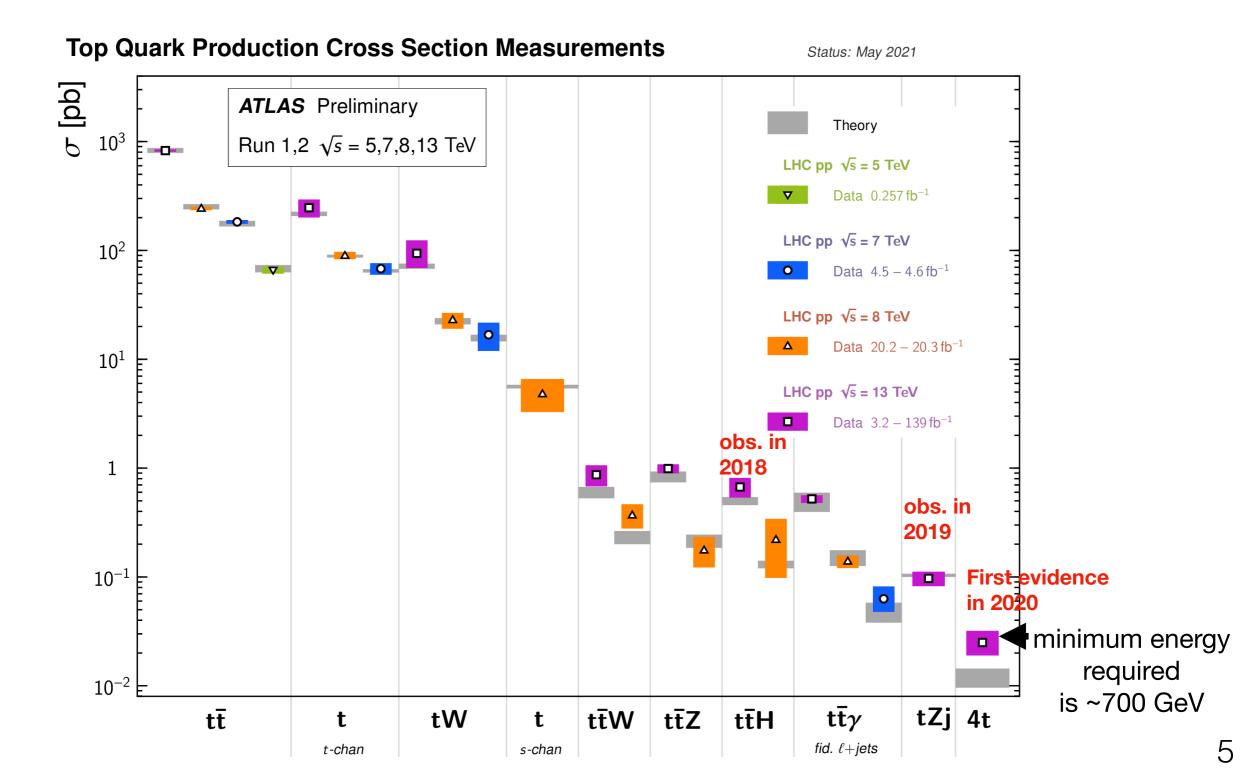
- Snowmass is a scientific study which provides an opportunity for the entire particle physics community to come together to identify and document a scientific vision for the future of particle physics in the US and its international partners
 - Link to know more about Snowmass
- ATLAS and CMS prepared a common white paper to be used as input for the Snowmass process
- The paper is structured as follows: for each section, Yellow Report (YR) results have been summarised in 3-4 pages and subsequent new ATLAS and CMS results are highlighted in 1-page summaries

EF03: Heavy flavor and top quark physics


4 EF03: EW Physics: Heavy flavor and top quark physics

- 4.1 Yellow Report summary
 - 4.1.1 Top quark mass measurements
 - 4.1.2 Differential $t\bar{t}$ cross-section measurements
 - 4.1.3 Study of rare processes involving top quarks
 - 4.1.4 Constraints on flavor-changing neutral currents couplings
- 4.2 New results
 - 4.2.1 Sensitivity to the measurement of the Standard Model four top quark cross section with ATLAS at the HL-LHC [122]

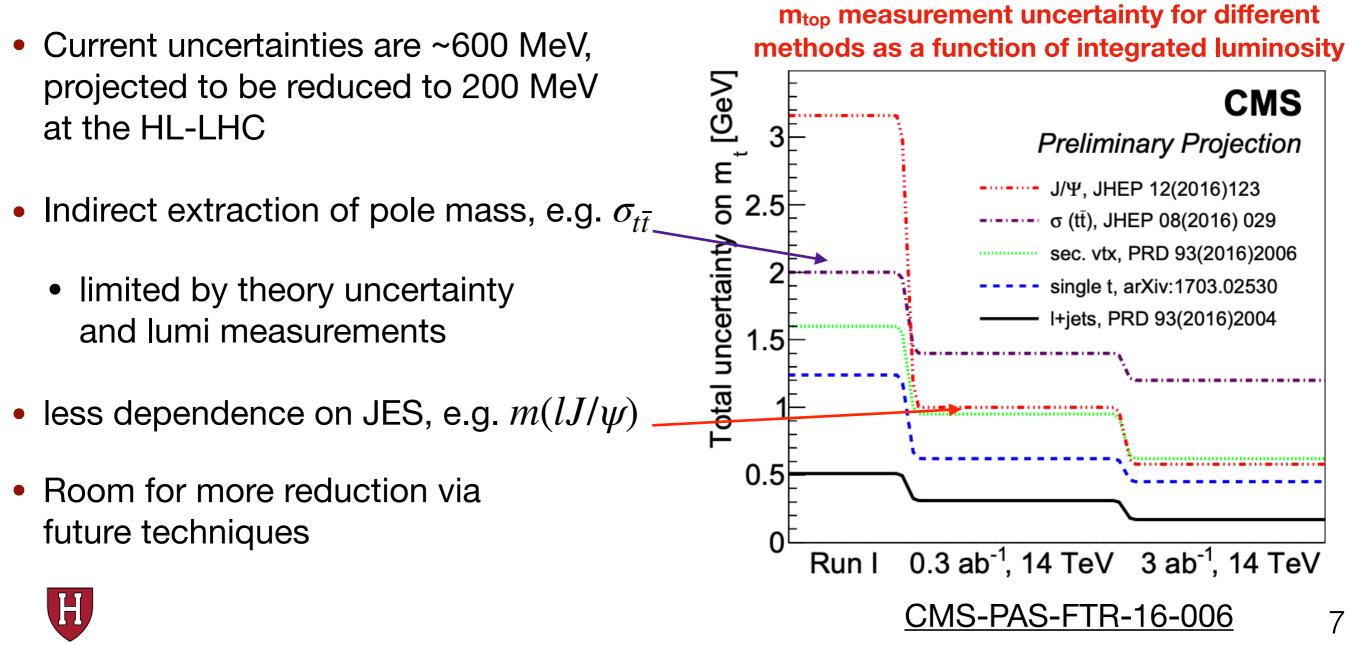
Link to the <u>Note</u>: ATL-PHYS-PUB-2022-018 CMS PAS FTR-22-001


Introduction

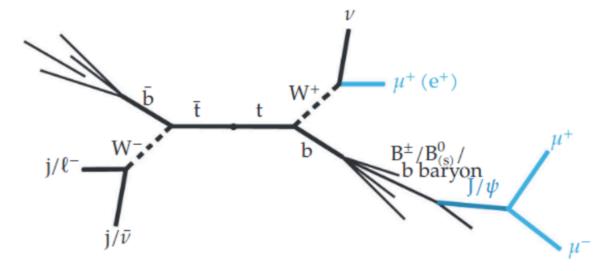
• We have been doing Top & SM measurements for a long time!

Introduction

- Run 2 brought us to an unprecedented centre-of-mass energy of 13 TeV
- Opened up measurements to new rare SM processes


Introduction

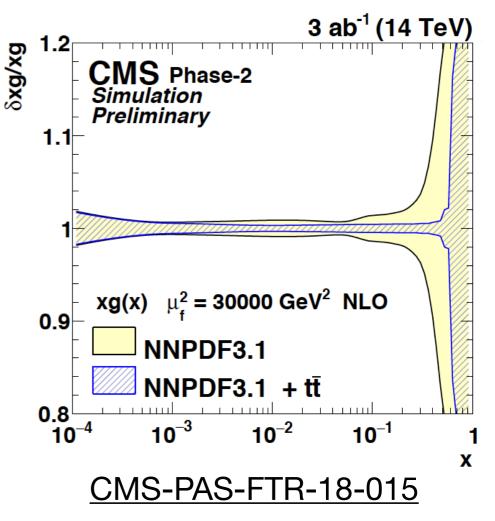
- Why keep doing Top & SM measurements?
 - Teach us about the SM
 - Improves our theoretical calculations, MC modelling, and understanding of CP calibrations and uncertainties
 - Measurements will be important for constraining PDFs, understanding electroweak symmetry breaking (EWSB), and measuring fundamental properties of the SM
 - Can uncover unexpected deviations from the SM
- The HL-LHC will provide the opportunity for more precision, particularly at high energies which are currently limited by statistical uncertainties


Top mass

- Top quark plays a crucial role in EWSB and offers a gateway to searching for new physics beyond the SM
- m_{top} is a fundamental parameter related to other EWK parameters stringent tests of SM
 - Most precise measurements exploit kinematic information of the decay products

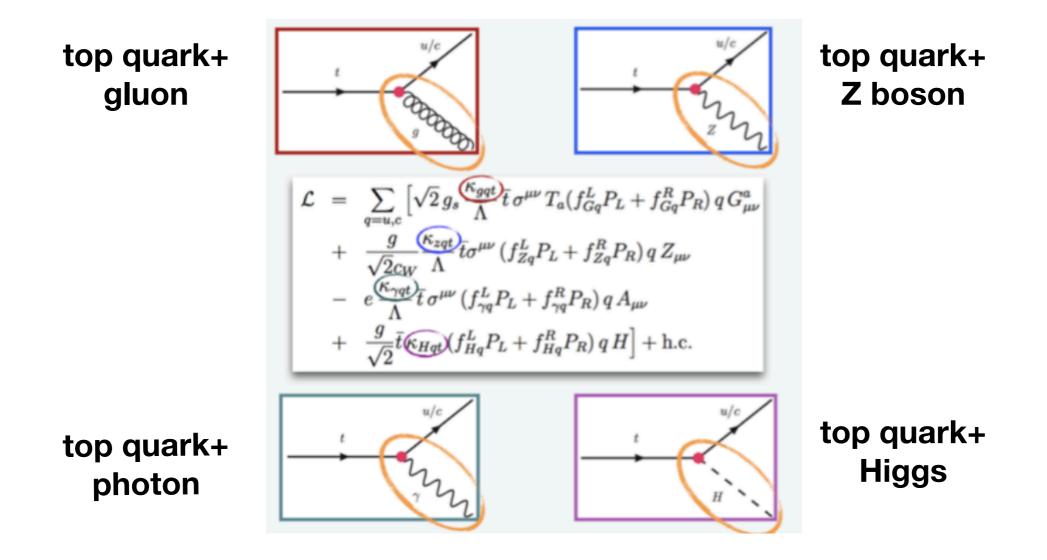
Top quark mass measurement using $t \overline{t}$ pairs with a J/ψ

- Measurements using $t\bar{t}$ pairs with a $J/\psi \rightarrow \mu\mu$ in final state using the strong correlation between m_{top} and $m(lJ/\psi)$
 - BR ($b \rightarrow J/\psi(\rightarrow \mu\mu) + X$) ~10⁻³


- Will benefit from larger data samples from the HL-LHC
- A reduction of $t\bar{t}$ modeling uncertainties by a factor of two and a reduction of some of the experimental uncertainties by up to a factor two are assumed for these projections
 - Main result of this study is a statistical projection of the measurement
- ATLAS [ATL-PHYS-PUB-2018-042]: a statistical uncertainty of ~0.14 GeV is expected with a systematic uncertainty of 0.48 GeV
 - Dominant uncertainties are from signal modeling (fragmentation functions / b-hadron fractions) and from JES/JER
- CMS [<u>CMS-PAS-FTR-16-006</u>]: expected to yield an ultimate relative precision below
 0.1% at the HL-LHC

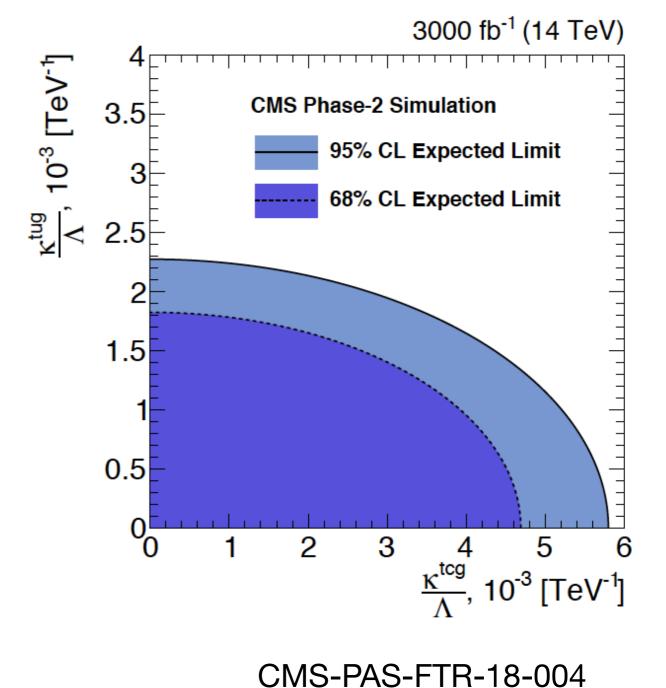
m_{top} measurements will be an important element of HL-LHC

Differential $t\bar{t}$ cross-section measurements


- Done in e/μ +jets channels
- Most significant reduction of uncertainty is expected to come from:
 - Improved jet energy calibration
 - Reduced uncertainty in the b-jet identification
- Final projected uncertainty is estimated below 5%
- Precision in the measurement will profit from the enormous amount of data and the extended ηcoverage of the Phase-2 CMS detector, which enables fine-binned measurements at high rapidity that are not possible with the current detector
- Uncertainties of the gluon distribution are drastically reduced and depend directly on the uncertainty of the integrated luminosity (assumed to be 1%)

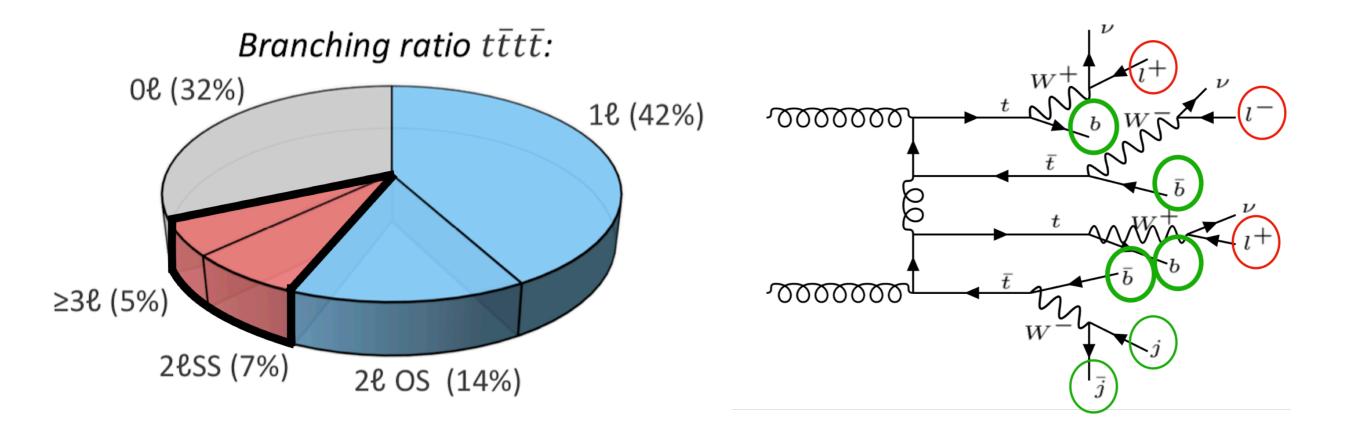
Prospects at HL-LHC of the relative gluon uncertainties of the original and profiled NNPDF3.1 PDF set

Flavor Changing Neutral Currents (FCNC)


- FCNC in the SM is forbidden at tree-level: heavily suppressed in loops by GIM mechanism BRs ~10⁻¹⁴
- BSM can enhance FCNC up to ~10⁻⁴
 - Many potential models: 2HDM, MSSM, RPV SUSY, ...
- Any observation of FCNC can hint to new physics
- FCNC probe can be done in both top quark **production**, and **decay**

Flavor Changing Neutral Currents (FCNC)

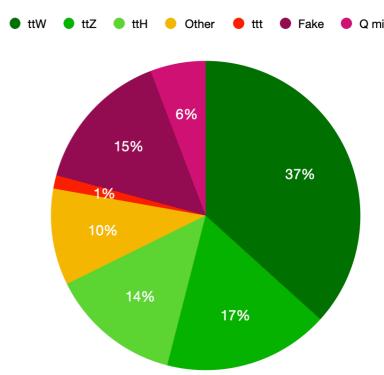
- Search prospects for gluon-mediated FCNC in top quark production via tug and tcg vertices were studied with CMS HL-LHC detector
- Dominant uncertainty is normalization of multijet background
- Limits on branching fractions:
 - $B(t \to ug) < 3.8 \times 10^{-6}$
 - $B(t \rightarrow cg) < 32 \times 10^{-6}$


Exploiting full HL-LHC dataset will allow us to improve current limits by an order of magnitude

11

Sensitivity of the SM $t\bar{t}t\bar{t}$ cross section at the HL-LHC

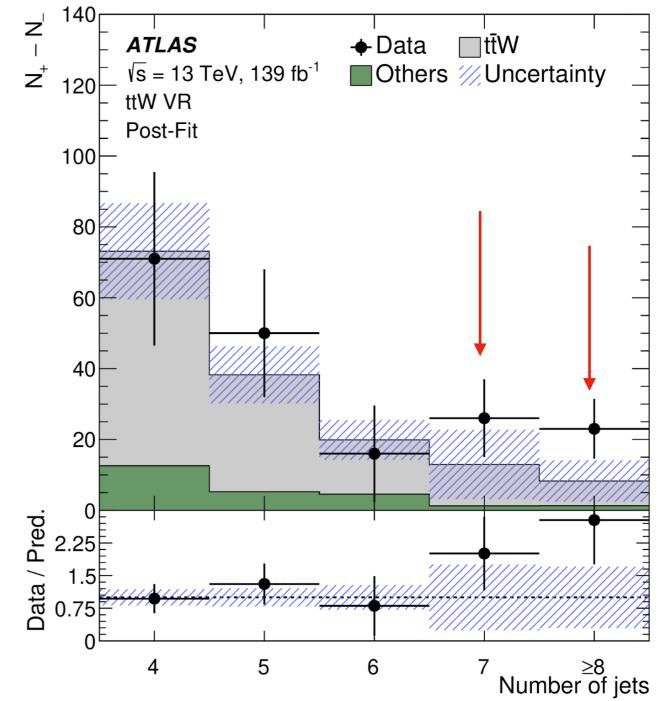
- Based on the recent evidence found in the SS/ML channel using the full run-2 dataset
- See Mathis's talk from Monday for more details



Run 2 analysis in a nutshell

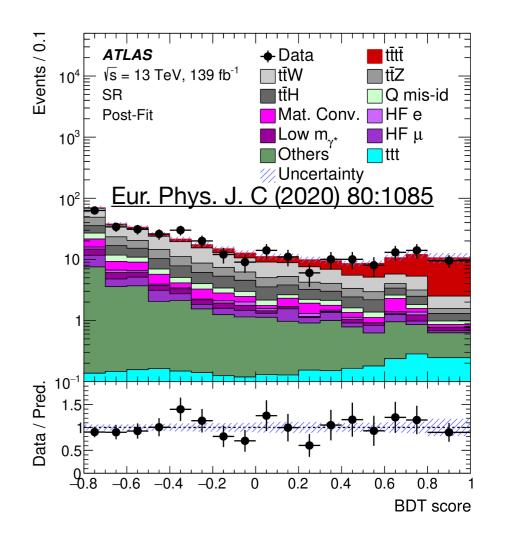
- Five analysis regions: 1 Signal Region & 4 Control Regions
- Main Backgrounds:
 - ttW (37%), ttZ(17%), and ttH (14%)
 - Fake and non-prompt leptons (15%)
 - Charge mis-assignment (6%)
- Template Method is used to determine the major backgrounds
 - Background shapes are estimated from MC
 - Normalisation is obtained from the fit

Parameter	$NF_{t\bar{t}W}$	NF _{Mat.} Conv.	NF _{Low Mee}	NF _{HF} e	$NF_{HF} \mu$
Value	1.6 ± 0.3	1.6 ± 0.5	0.9 ± 0.4	0.8 ± 0.4	1.0 ± 0.4


NEUE NEUE

Compatible with other ATLAS and recent CMS measurements!

ttW Validation Region

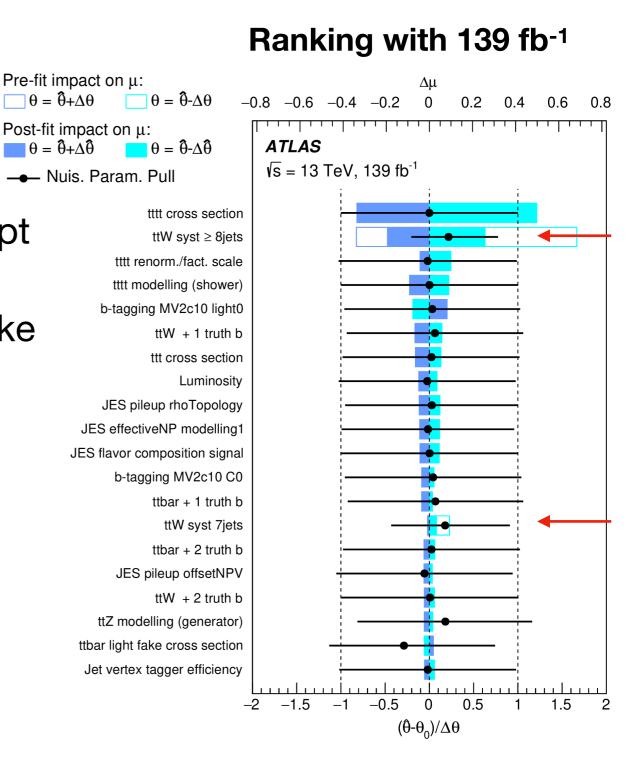

- Use Validation Region to check ttW+jets normalisation and modeling
 - Additional jets: Uncertainty of 125% is assigned to events with 7 jets and 300% is assigned to events with ≥8 jets
 - Based on Validation Region mismodeling

Results with 139 fb⁻¹

- Signal is separated from background based on a multivariate discriminant built in the signal region by combining input observables into a BDT
- The measured ttt signal strength is found to be: $\mu = \sigma_{t\bar{t}t\bar{t}} / \sigma_{t\bar{t}t\bar{t}}^{SM} = 2.0^{+0.4}_{-0.4} (stat) \quad ^{+0.7}_{-0.5} (syst) = 2.0^{+0.8}_{-0.6}$
- Cross section: $\sigma(t\bar{t}t\bar{t}) = 24^{+5}_{-5}(stat) + 5_{-4}(syst) fb = 24^{+7}_{-6} fb$
- Compared to the theoretical prediction of $\sigma(t\bar{t}t\bar{t}) = 12 \pm 2\,fb$
- Strong 4.3σ (2.4 σ expected) evidence
- Consistent to 1.7σ with the Standard Model

Extrapolation Studies

- The expected cross-section of tttt at 14 TeV is 15.83 +18%/ -21% fb (JHEP 02 (2018) 031)
 - An increase by a factor of 1.3 with respect to 13 TeV
- Extrapolation studies are performed with the setup that uses HT as fitted variations in five signal regions
 - Easier to extrapolate than the result using the BDT score
 - Almost the same significances as with the BDT


Channel	Selection criteria		
Common	$N_j \ge 6, N_b \ge 2 \text{ and } H_T > 500 \text{ GeV}$		
SR2b21	SS events with $N_b = 2$		
SR2b31	multilepton events with $N_b = 2$		
SR3b21	SS events with $N_b = 3$		
SR3b31	multilepton events with $N_b = 3$		
SR4b	events with $N_b \ge 4$		

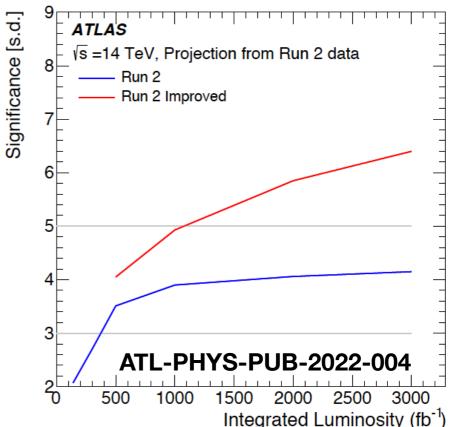
HL-LHC Recommendations

- Looked into several extrapolation scenarios based on how to scale the systematics with the assumption agreed for the 2019 Yellow Report
- Followed the recommendations explained in the High Lumi LHC Systematics
 - Modelling uncertainties could be halved (ATL-PHYS-PUB-2019-005)
 - No dedicated studies for HL-LHC expected performance, except for HF
 - Recommended way to apply flavor tagging uncertainties is to scale down the nuisance parameters from the current analyses
 - Systematics driven by intrinsic detector limitations are left unchanged, or revised according to detailed simulation studies of the upgraded detector

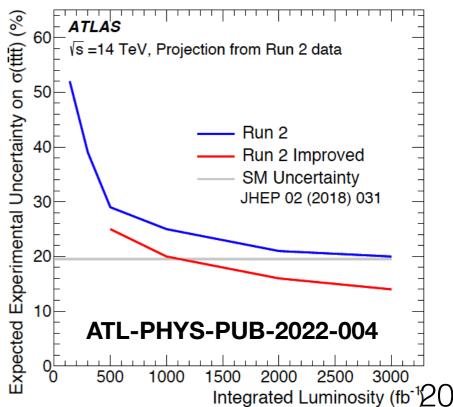
Two Different Scenarios

- Extrapolation is performed under two different scenarios of the evolution of detector performance and associated systematic uncertainties
- "Run 2" : systematic uncertainties are kept equal to their Run 2 values except uncertainties related to $t\bar{t}W + 7/8$ jets (take the post-fit values of the corresponding nuisance parameters from the 139 fb⁻¹ result)
- "Run 2 Improved": includes the $t\bar{t}W + 7/8$ jets scaling and includes a decrease of the systematic uncertainties based on the "YR18 systematic uncertainties"

Run 2 Improved


Uncertainty source	Treatment in the "Run 2 Improved" model
Signal modelling	
$t\bar{t}t\bar{t}$ cross section	Half of Run 2
$t\bar{t}t\bar{t} \mod$	Half of Run 2
Background modelling	
$t\bar{t}W$ +jets modelling	
Renormalisation and factorisation scales	Half of Run 2
Generator	Half of Run 2
Jets multiplicity modelling	Scaled by Run 2 pulls
Additional heavy flavour jets	Scaled by luminosity
$t\bar{t}t \mod$	
Cross section	Half of Run 2
Additional heavy flavour jets	Scaled by luminosity
Non-prompt leptons modelling	Scaled by luminosity
$t\bar{t}H$ +jets and $t\bar{t}Z$ +jets modelling	
Cross section	Half of Run 2
Renormalisation and factorisation scales	Half of Run 2
Generator	Half of Run 2
PDF	Half of Run 2
Additional heavy flavour jets	Scaled by luminosity
Other background modelling	
Cross section	Half of Run 2
Additional heavy flavour jets	Scaled by luminosity
Charge misassignment	Same as Run 2
Template fit shape uncertainties	
Mat. Conv., γ^* , and HF non-prompt leptons	Scaled by luminosity
Other fake leptons	Half of Run 2
Additional heavy flavour jets	Half of Run 2
Instrumental	
Jet uncertainties	Same as Run 2
Jet flavour tagging (light-flavour jets)	Half of Run 2
Luminosity	Same as Run 2
Jet flavour tagging (<i>b</i> -jets)	Half of Run 2
Jet flavour tagging $(c-jets)$	Half of Run 2
Other experimental uncertainties	Same as Run 2

H


Expected Sensitivity

- A significance of 6.4σ for the SM $t\bar{t}t\bar{t}$ process is expected in the "Run 2 Improved" scenario
 - Expecting total uncertainty on the cross section of ~14%
 - Experimental precision is expected to be significantly better than the precision of the current SM computation
- The better sensitivity is driven by:
 - Smaller theoretical uncertainties assumed in the $t\bar{t}t$ cross section
 - Better modeling of the $t\bar{t}W/t\bar{t}Z$ + HF jets
 - Smaller b-tagging experimental uncertainties

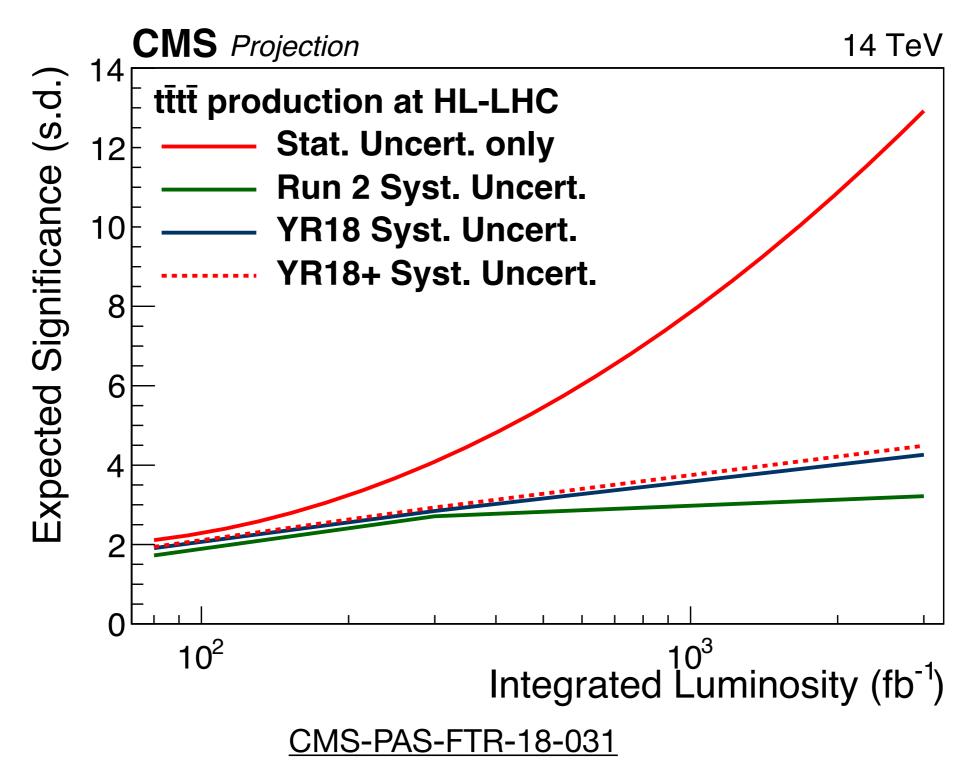
Expected significance

Expected experimental uncertainty

Sensitivity Studies by CMS

- Based on the run-2 results with 36 fb⁻¹
- Tried various treatment of systematic uncertainties

Source uncert.	Stat. only	Run 2	YR18	YR18+
Statistical	$(L/L_{ref})^{-0.5}$	$(L/L_{ref})^{-0.5}$	$(L/L_{ref})^{-0.5}$	$(L/L_{ref})^{-0.5}$
Experimental	None	Original	$\max(0.5, (L/L_{ref})^{-0.5})$	$(L/L_{ref})^{-0.5}$
Int. Luminosity	None	Original	0.4	0.4
Data-driven bckgrnd	None	Original	$\max(0.5, (L/L_{ref})^{-0.5})$	$(L/L_{ref})^{-0.5}$
Theory (shapes)	None	Original	0.5	0.5
Bckgrnd cross section	None	Original	0.5	0.5
Signal cross section	None	Original	0.5	0.5

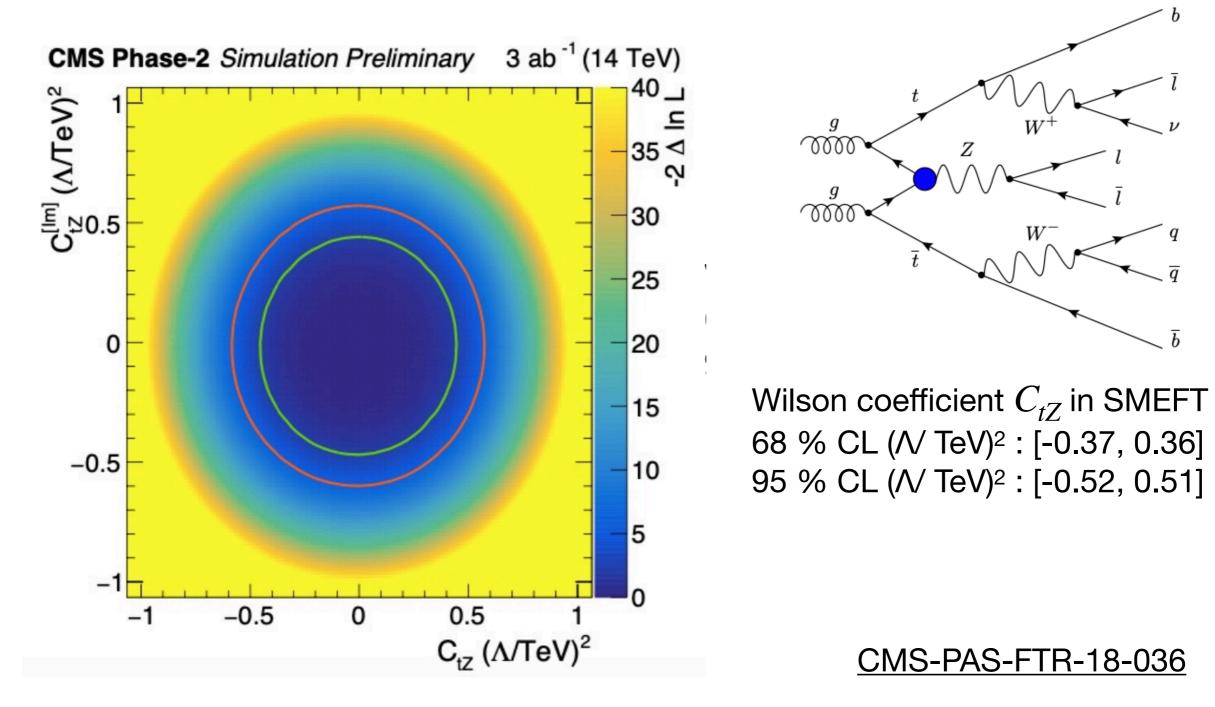

Expected significance of $t\bar{t}t\bar{t}$ **signal over a background-only hypothesis**

Int. Luminosity	Stat. only	Run 2	YR18	YR18+
$300 \ {\rm fb}^{-1}$	4.09	2.71	2.85	2.93
$3 \mathrm{ab}^{-1}$	12.9	3.22	4.26	4.49

Sensitivity Studies by CMS

- A 4.5σ significance is expected with the most optimistic systematics scenario
- Cross-section can be constrained down to 9% statistical uncertainty and 18% to 28% total uncertainty (depending on the considered systematic uncertainties)

Conclusions


- HL-LHC will offer a great opportunity for many top measurements & top related searched
- Detector upgrades will allow for better forward jet and lepton reconstruction
 essential to improve current measurements
- Will produce currently unachievable measurements
- Improve our understanding and learn more about the SM
- Can uncover unexpected deviations from the SM pointing to new physics
- Improving theoretical uncertainties is a key player to achieve better precision

Extra Material

ttZ and EW top couplings at the HL-LHC

• Expected sensitivity to Wilson coefficients of top quark operators C_{tZ} in the ttZ process

FCNC - tZq

- Done in the three charged lepton final states
- The dominant sources of uncertainties, in both signal and background estimations, are from the theoretical normalization and the modeling of the background processes MC
- An improvement by a factor of four is expected over the current Run-2 analysis

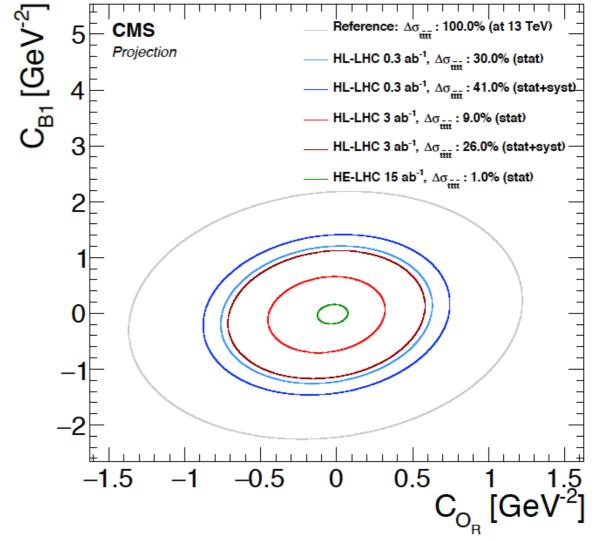
	-1 σ	Expected	
$\mathcal{B}(t \to uZ)$			
$\mathcal{B}(t \to cZ)$	5.8×10^{-5}	8.1×10^{-5}	12×10^{-5}

Table 6: The expected 95% confidence level upper limits on the top-quark FCNC decay branching ratios are shown together with the $\pm 1\sigma$ bands, which include the contribution from the statistical and systematic uncertainties. Presented limits are extracted from "Asimov data" in the signal and background control regions, defined as the total expected pre-fit background. Systematic uncertainty from the MC statistical uncertainty is considered as well.

Operator	Expected limit
$ C_{uB}^{(31)} $	0.13
$ C_{uW}^{(31)} $	0.13
$ C_{uB}^{(32)} $	0.14
$ C_{uW}^{(32)} $	0.14

Table 8: Expected 95% CL upper limits on the moduli of the operators contributing to the FCNC decays $t \rightarrow uZ$ and $t \rightarrow cZ$ within the TopFCNC model for a new-physics energy scale $\Lambda = 1$ TeV.

ATL-PHYS-PUB-2019-001


$t\overline{t}W$ Validation Region: \geq 4jets \geq 2b-tagged

Uncertainty source	Δ	μ	140
Signal modelling			z'^{140} = ATLAS + Data $\Box t\bar{t}W$ =
tītī cross section	+0.56	-0.31	
<i>tītī</i> modelling	+0.15	-0.09	z^+ 120 $\begin{bmatrix} \sqrt{s} = 13 \text{ TeV}, 139 \text{ fb}^{-1} \end{bmatrix}$ Others $\%$ Uncertainty
Background modelling			
$t\bar{t}W$ modelling	+0.26	-0.27	☐ Post-Fit
tīt modeling	+0.10	-0.07	
Non-prompt leptons modeling	+0.05	-0.04	
$t\bar{t}H$ modelling	+0.04	-0.01	80
$t\bar{t}Z$ modelling	+0.02	-0.04	
Charge misassignment	+0.01	-0.02	
Instrumental			
Jet uncertainties	+0.12	-0.08	
Jet flavour tagging (light-jets)	+0.11	-0.06	40
Simulation sample size	+0.06	-0.06	
Luminosity	+0.05	-0.03	
Jet flavour tagging (b-jets)	+0.04	-0.02	20
Other experimental uncertainties	+0.03	-0.01	
Jet flavour tagging (c-jets)	+0.03	-0.01	
Total systematic uncertainty	+0.69	-0.46	
Statistical	+0.42	-0.39	
Non-prompt leptons normalisation(HF, material conversions)	+0.05	-0.04	
$t\bar{t}W$ normalisation	+0.04	-0.04	
Total uncertainty	+0.82	-0.62	
			4 5 6 7 ≥ 8

⁷ Number of jets

Sensitivity of the SM $t\bar{t}t\bar{t}$ cross section at the HL-LHC

- The cross-section can be constrained down to 9% statistical uncertainty and 18% to 28% total uncertainty, depending on the considered systematic uncertainties, while a 4.5σ significance is expected with the most optimistic systematics scenario
- The expected sensitivity on the *tttt* cross-section is also used to provide constraints on EFT four top contact interaction operators, setting limits on their Wilson coefficients

CMS-PAS-FTR-18-031