

Prospects for Lorentz invariance violation searches with top quarks Top LHC France 2022 - 10/05/2022 - IP2I Lyon

Nicolas Chanon, Stéphane Perriès, IP2I Lyon, CNRS/IN2P3 Aurélien Carle, CC-IN2P3

Lorentz invariance

Lorentz transformation:

 $x^{\mu} \mapsto x'^{\mu} = \Lambda^{\mu}_{\ \nu} x^{\nu}$

Global transformation of spacetime coordinates

Lorentz group:

- Rotations
- Lorentz boosts
- **P** (spacial inversion) and **T** (time reversal)

C: charge conjugation, transforms particles into antiparticles **CPT theorem**: a QFT a preserving Lorentz invariance must also preserve CPT symmetry.

=> CPT is intimately connected with Lorentz invariance

CPT violation implies Lorentz violation for local QFT theories *[hep-ph:0201258]*

Observation shows Lorentz invariance and CPT symmetry are preserved (so far).

Standard Model Extension

Theoretical motivation:

- Models of bosonic **strings** predict spontaneous breaking of Lorentz Invariance [PRD.39.683]
- Lorentz Invariance is not necessarily maintained in **Loop Quantum Gravity** [gr-qc/ 0205125]
- The Quantum Gravity scale could be lower than the Planck scale, e.g. in the paradigm of large extra dimensions [hep-ph/9803315]
- Remnants of the breaking could be observed at lower energy scale

Standard Model Extension (SME) Effective Field Theory:

- Add all Lorentz- and CPT-violating operators to the SM Lagrangian [hep-ph/9809521]
- The <u>Dirac sector</u>:

$$L_{SME} = \frac{1}{2}i\bar{\psi}\Gamma^{\nu}\partial_{\nu}\psi - M\bar{\psi}\psi$$
$$\Gamma^{\nu} = \gamma^{\nu} + c^{\mu\nu}\gamma^{\mu} + d^{\mu\nu}\gamma^{5}\gamma^{\mu} + e^{\nu} + if^{\nu}\gamma^{5} + \frac{1}{2}g^{\mu\nu\lambda}\sigma_{\lambda\mu}$$
$$M = m + a_{\mu}\gamma^{5} + b_{\mu}\gamma^{5}\gamma^{\mu} + H_{\mu\nu}\sigma_{\mu\nu}$$

N. Chanon - Soutenance de HDR - 3

Time-dependant signal with top quarks

$$L_{SME} = \frac{1}{2} i \bar{\psi} \Gamma^{\nu} \partial_{\nu} \psi - M \bar{\psi} \psi$$

$$\Gamma^{\nu} = \gamma^{\nu} + c^{\mu\nu} \gamma^{\mu} + d^{\mu\nu} \gamma^{5} \gamma^{\mu} + e^{\nu} + i f^{\nu} \gamma^{5} + \frac{1}{2} g^{\mu\nu\lambda} \sigma_{\lambda\mu}$$

$$M = m + a_{\mu} \gamma^{5} + b_{\mu} \gamma^{5} \gamma^{\mu} + H_{\mu\nu} \sigma_{\mu\nu}$$

Particle-Lorentz violation:

- At Lagrangian level, SME coefficients are constant matrices, not respecting Lorentz transformations
- They indicate preferential directions in spacetime
- An inertial frame still needs to be defined to report any observation.
- By convention, use the **Sun-Centered frame**.

Within the Sun-centered frame:

- The laboratory (CMS) frame is rotating daily around the earth Z-axis of rotation
- The SME coefficients are constant
- Induces a modulation of the top-antitop cross section with sidereal time

Why searching for LIV with top quarks?

- Only one actual measurement performed, at D0 Tevatron (2012): best direct world limits on Lorentz invariance violation at Tevatron
- The top quark is the **heaviest** known elementary particle, and the only quark which **decays before hadronizing**
- It is interesting to **test special relativity** in this poorly tested sector.
- Top quark production has large cross section at the LHC: expect much improved precision.

Top quark: existing bounds

Rev.Mod.Phys. 83: 11 (2011)

Top quark sector in the SME

Berger, Kostelecký, Liu, Phys. Rev. D 93, 036005 (2016)

LIV lagrangian related to top quark:

- SME coefficients $c_{\mu\nu}$ are violating particle Lorentz invariance
- $c_{\mu\nu}$ trace is Lorentz-invariant, and its antisymmetric part can be absorbed elsewhere in the Lagrangian: consider $c_{\mu\nu}$ as symmetric and traceless

Define: $c_{\mu\nu} = \frac{1}{2}[(c_L)_{\mu\nu} + (c_R)_{\mu\nu}], \quad d_{\mu\nu} = \frac{1}{2}[(c_L)_{\mu\nu} - (c_R)_{\mu\nu}]$

Top pair production in the SME

Berger, Kostelecký, Liu, Phys. Rev. D 93, 036005 (2016)

Selecting top pair production at DØ

D0 Collaboration, PRL108:261603, 2012

Dataset and selection

- **Dataset**: Integrated luminosity L=5.3 fb-1 of proton-antiproton collisions (2002-2009)

Select **semi-leptonic decays** of top pair production:

- one **electron or muon** with pT > 20 GeV and $|\eta| < 1.1$ (glectron) or < 2 (muon)
- missing transverse energy (~neutrino) mET > 20 (25) GeV
- **at least 4 jets** with pT > 20 GeV (leading: 40 GeV) and $|\eta| < 2.5$,
- among which **1 b-tagged jet** (b-tagging with neural network algorithm)

Searches for LIV in Top pair production at DØ

D0 Collaboration, PRL108:261603, 2012

Sidereal time analysis

- Search for periodic variation of the recorded number of events (bins of 2 sidereal hours)
- Correct data for varying instantaneous luminosity in the fill

Search for a sinusoidal signal (fit the functional forms of f_{SME} to R):

TABLE II: Forms for $f_{\text{SME}}(\phi)$ used to extract SME coefficients.

f_{SME}:

Can dition	f (1)
Condition	$J_{\text{SME}}(\phi)$
$C_{XX} = -C_{YY}$	$2C_{XX}\left(\frac{b_1-b_2}{2}\cos 2\phi + b_3\sin 2\phi\right)$
$C_{XY} = C_{YX}$	$2C_{XY}\left(\frac{b_1-b_2}{2}\sin 2\phi - b_3\cos 2\phi\right)$
$C_{XZ} = C_{ZX}$	$2C_{XZ}\left(b_4\cos\phi + b_5\sin\phi\right)$
$C_{YZ} = C_{ZY}$	$2C_{YZ}\left(b_4\sin\phi - b_5\cos\phi\right)$

DØ results

D0 Collaboration, PRL108:261603, 2012

TABLE III: Limits on SME coefficients at the 95% C.L., assuming $(c_U)_{\mu\nu} \equiv 0$.

Coefficient	Value \pm Stat. \pm Sys.	95% C.L. Interval
$(c_Q)_{XX33}$	$-0.12\pm 0.11\ \pm 0.02$	[-0.34, +0.11]
$(c_Q)_{YY33}$	$0.12 \pm 0.11 \ \pm 0.02$	[-0.11, +0.34]
$(c_Q)_{XY33}$	$-0.04\pm 0.11\ \pm 0.01$	[-0.26, +0.18]
$(c_Q)_{XZ33}$	$0.15 \pm 0.08 \ \pm 0.02$	[-0.01, +0.31]
$(c_Q)_{YZ33}$	$-0.03 \pm 0.08 \ \pm 0.01$	[-0.19, +0.12]

TABLE IV: Limits on SME coefficients at the 95% C.L., assuming $(c_Q)_{\mu\nu} \equiv 0$.

Coefficient	$Value \pm Stat. \pm Sys.$	95% C.L. Interval
$(c_U)_{XX33}$	$0.10 \pm 0.09 \pm 0.02$	[-0.08, +0.27]
$(c_U)_{YY33}$	$-0.10 \pm 0.09 \ \pm 0.02$	[-0.27, +0.08]
$(c_U)_{XY33}$	$0.04 \pm 0.09 \ \pm 0.01$	[-0.14, +0.22]
$(c_U)_{XZ33}$	$-0.14 \pm 0.07 \ \pm 0.02$	[-0.28, +0.01]
$(c_U)_{YZ33}$	$0.01 \pm 0.07 \ \pm < 0.01$	[-0.13, +0.14]

TABLE V: Limits on SME coefficients at the 95% C.L., assuming $c_{\mu\nu} \equiv 0$.

Coefficient	$Value \pm Stat. \pm Sys.$	95% C.L. Interval
d_{XX}	$-0.11 \pm 0.10 \pm 0.02$	[-0.31, +0.09]
d_{YY}	$0.11 \pm 0.10 \ \pm 0.02$	[-0.09, +0.31]
d_{XY}	$-0.04\pm 0.10\ \pm 0.01$	[-0.24, +0.16]
d_{XZ}	$0.14 \pm 0.07 \ \pm 0.02$	[-0.01, +0.29]
d_{YZ}	$-0.02\pm 0.07\ \pm < 0.01$	[-0.16, +0.13]

SME benchmarks:

- c_{TT} impacts inclusive cross section: no handle
- No sensitivity to c_{ZZ} (owing to earth rotation around Z-axis)
- CXX=-CYY
- CXY=CYX
- CYZ=CZY
- CXZ=CZX
- Measure limits on each SME coefficient assuming the other coefficients to be 0
- Each coefficient is compatible with 0
 with absolute precision of ~10%

The LHC: a top quark factory

From Tevatron to LHC, x100 increase in cross section:

- Gluon fusion mechanism is now dominant,
- Higher gluon parton density function in the proton at the LHC
- Higher center-of-mass energy

Integrated luminosity

 About 150 fb⁻¹ recorded at Run 2 (2015-2018) => x30 DØ analysis

Prospects at the LHC

Carle, Chanon, Perriès, Eur.Phys.J.C 80 (2020) 2, 128

 W^{+}

00000

Prospective study:

- Goal: estimate the expected precision that could be achieved at LHC Run 2 (L~150 fb-1)
- Consider dilepton eµ channel with at least 2 jets
- Generate top pair production at LO in perturbative QCD
- Normalize events to NNLO in pQCD
- Evaluate the SME time modulation with these samples
- Assume ATLAS/CMS reference frame at the LHC

Expected sensitivity at the LHC and future colliders

Carle, Chanon, Perriès, Eur.Phys.J.C 80 (2020) 2, 128

Benchmarks:

- **D0:** Recomputed expected sensitivity for 5.3 fb-1 of p-pbar collisions at 1.96 TeV
- LHC Run 2: Expected sensitivity for 150 fb-1 of p-p collisions at 13 TeV -
- **HL-LHC:** 3 ab-1 of p-p collisions at 14 TeV (expected to start data taking in 2029)
- **HE-LHC:** 15 ab-1 of p-p collisions at 27 TeV (option for after HL-LHC, replacing LHC) magnets in the same tunnel)
- FCC-hh: 15 ab-1 of p-p collisions at 100 TeV (option for after HL-LHC, new magnets and new 100km tunnel)

Expected precision on the top-quark SME coefficients:

	DØ	LHC (Run 2)	HL-LHC	HE-LHC	FCC
$\Delta c_{LXX}, \Delta c_{LXY}$	1×10^{-1}	7×10^{-4}	2×10^{-4}	2×10^{-5}	5×10^{-6}
$\Delta c_{LXZ}, \Delta c_{LYZ}$	8×10^{-2}	3×10^{-3}	5×10^{-4}	9×10^{-5}	2×10^{-5}
$\Delta c_{RXX}, \Delta c_{RXY}$	9×10^{-2}	3×10^{-3}	5×10^{-4}	8×10^{-5}	5×10^{-5}
$\Delta c_{RXZ}, \Delta c_{RYZ}$	7×10^{-2}	1×10^{-2}	2×10^{-3}	4×10^{-4}	8×10^{-5}
$\Delta c_{XX}, \Delta c_{XY}$	7×10^{-1}	1×10^{-3}	2×10^{-4}	3×10^{-5}	9×10^{-6}
$\Delta c_{XZ}, \Delta c_{YZ}$	6×10^{-1}	4×10^{-3}	7×10^{-4}	1×10^{-4}	3×10^{-5}
$\Delta d_{XX}, \Delta d_{XY}$	1×10^{-1}	6×10^{-4}	1×10^{-4}	2×10^{-5}	8×10^{-6}
$\Delta d_{XZ}, \Delta d_{YZ}$	7×10^{-2}	2×10^{-3}	4×10^{-4}	8×10^{-5}	2×10^{-5}
HC Run 2: Ex	xpect 2-3	orders	FCC: Ex	pect 2 m	ore orde
magnitude improvement wrt		ent wrt	of magnitude improveme		
(depending on the coeff.)			relative to LHC Run 2		

Higher center-of-mass energies

Carle, Chanon, Perriès, Eur.Phys.J.C 80 (2020) 2, 128

- Compare f(t) in p-p collisions at several center-of-mass energy (assuming CMS reference frame), and for several benchmark coefficients
- The amplitude of f(t) increases with the energy (comes mostly from the matrix element, not pdf)

N. Chanon - Collider tests of Lorentz Invariance - 15

Which collider / experiment?

Carle, Chanon, Perriès, arXiv:1909.01990

Comparison LHC / Tevatron (assuming same center-of-mass energy):

- D0 less sensitive than ATLAS/CMS to cXX or cXY scenario
- D0 more sensitive than ATLAS/CMS to cXZ or cYZ scenario

Equivalent sensitivity at ATLAS or CMS (opposite azimuth in the LHC ring)

Conclusions

Searches for Lorentz invariance in the top quark sector:

- The top sector is almost an unexplored territory for testing Lorentz invariance at high energy
- Only one direct measurement performed so far, at Tevatron
- Expect much improved results at the LHC
- Projections show an expected sensitivity that might be improved by a factor 10²-10³ at the LHC, and 10⁵ at the FCC-hh, relative to Tevatron measurement

Back-up slides

A note on top/antitop mass difference

Top/Antitop mass difference

- Particle/antiparticle mass difference is not allowed to elementary particles within local quantum field theories, such as the SME
- Can be allowed in non-local theories with CPT breaking

Experimental method

- Kinematic fit used to reconstruct the top mass in lepton+jets or dilepton decay channels
- Can measure top / antitop mass in separated dataset and combine statistically
- Or can measure simultaneously top and antitop masses

E.g. best measurement at 8 TeV (PLB 770 (2017) 50-71):

 $\Delta m_{\rm t} = -0.15 \pm 0.19 ({\rm stat}) \pm 0.09 ({\rm syst}) \,{\rm GeV}$

- Compatible with the SM
- This measurement has not been interpreted in the context of a given BSM model

Search for CPT violation in B_(s) oscillations at LHCb

LHCb Collaboration, Phys. Rev. Lett. 116, 241601 (2016)

