CNIS

Composite Models

Giacomo Cacciapaglia IP2I Lyon, France

Composite Higgs models 101

- · Symmetry broken by a condensate (of TC-fermions)
- Higgs and longitudinal Z/W emerge as mesons
 (pions)

Scales:

f : Higgs decay constant v : EW scale $m_\rho \sim 4\pi f$

EWPTs + Higgs coupl. limit:

 $f \gtrsim 4v \sim 1 \,\,\mathrm{TeV}$

Composite Higgs models 101

How can light states emerge?

Composite Higgs models 101

	<i>SU</i> (2) _{TC}	$SU(4)_{\psi}$	SU(2) _L	<i>U</i> (1) _Y
$ \left(\begin{array}{c} \psi^1 \\ \psi^2 \end{array}\right) $			2	0
ψ^3			1	-1/2
ψ^4			1	1/2

T.Ryttov, F.Sannino 0809.0713 Galloway, Evans, Luty, Tacchi 1001.1361

The EW symmetry is embedded in the global flavour symmetry SU(4)!

The global symmetry is broken: SU(4)/Sp(4)
 Witten, Kosower

o 5 Goldstones (pions) arise:

The partial compositeness paradigm

Kaplan Nucl. Phys. B365 (1991) 259

we assume:

 $d_H > 1$ $d_{H^2} > 4$

 $\frac{1}{\Lambda_{\rm q}^{d-1}} \mathcal{O}_H q_L^c q_R \qquad \Delta m_H^2 \sim \left(\frac{4\pi f}{\Lambda_{\rm q}}\right)^{d-4} f^2 \qquad \text{Both irrelevant if}$

Let's postulate the existence of fermionic operators:

 $\frac{1}{\Lambda_{\rm fl.}^{d_F-5/2}} (\tilde{y}_L \ q_L \mathcal{F}_L + \tilde{y}_R \ q_R \mathcal{F}_R)$

This dimension is not related to the Higgs!

 $f(y_L \ q_L Q_L + y_R \ q_R Q_R)$ with $y_{L/R} f \sim \left(rac{4\pi f}{\Lambda_{
m e}}
ight)^{d_F-5/2} 4\pi f$

Top partners as baryons Gauge-fermion underlying theory

- by typically loop-suppressed
- psi need to carry QCD colour and
 flavour quantum numbers: too many!
- too many adjoint fermions!

Top partners as baryons Gauge-fermion underlying theory

- higher dimension, but easier to generate
- More freedom in choosing the fermion representations

Sequestering QCD in Partial compositeness G.Ferretti, D.Karateev $\mathcal{G}_{\mathrm{TC}}$: rep R' rep R 1312.5330, 1604.06467 Q χ $T' = QQ\chi$ or $Q\chi\chi$ SM: EW colour + hypercharge global : $\langle QQ \rangle \neq 0$ a) $\langle \chi \chi \rangle \neq 0$ coloured pNGBs di-boson PNGB Higgs b) $\langle \chi \chi \rangle = 0$ DM?

> Light top partners from t Hooft anomaly conditions?

Composite phenomenology in 2022

- Light ALPs (not in this talk)
- Coloured scalars -> 4 top final states
- Common exotic top partner decays
- @ Exotic top partners
- What are much anomalies trying to tell us?

Common exotic top partner decays

A.Banerjee et al 2203.0727 (Snowmass LOI)

PNGBS lighter than the top partners are to be expected in all composite models

The 5 decays are model-dependent, but they can be classified:

$$\begin{split} S_i^{++} &\to W^+ W^+ \\ S_i^+ &\to W^+ \gamma, \, W^+ Z \\ S_i^0 &\to W^+ W^-, \, \gamma \gamma, \, \gamma Z, \, ZZ. \end{split} \qquad \begin{array}{l} S^{++} &\to W^+ t \overline{b}, \\ S^{+} &\to t \overline{b}, \\ S^0 &\to t \overline{t}, \, b \overline{b}. \end{split}$$

Calculable ratios (from anomalies) and always present for all models.

Dominant, if present for the specific S.

Common exolic lop parlner decays

$$\mathcal{L}_{\Psi fV} = \frac{e}{\sqrt{2}s_W} \kappa_{T,L}^W \overline{T} W^+ P_L b + \frac{e}{2c_W s_W} \kappa_{T,L}^Z \overline{T} Z P_L t + \frac{e}{\sqrt{2}s_W} \kappa_{B,L}^W \overline{B} W^- P_L t + \frac{e}{2c_W s_W} \kappa_{B,L}^Z \overline{B} Z P_L b + \frac{e}{\sqrt{2}s_W} \kappa_{X,L}^W \overline{X} W^+ P_L t + L \leftrightarrow R + \text{h.c.}$$
(14)

$$\mathcal{L}_{\Psi fS} = \sum_{i} S_{i}^{+} \left[\kappa_{T,L}^{S_{i}^{+}} \overline{T} P_{L} b + \kappa_{X,L}^{S_{i}^{+}} \overline{X} P_{L} t + L \leftrightarrow R \right] + \text{h.c.} + \sum_{i} S_{i}^{-} \left[\kappa_{B,L}^{S_{i}^{-}} \overline{B} P_{L} t + L \leftrightarrow R \right] + \text{h.c.} + \sum_{i} S_{i}^{0} \left[\kappa_{T,L}^{S_{i}^{0}} \overline{T} P_{L} t + \kappa_{B,L}^{S_{i}^{0}} \overline{B} P_{L} b + L \leftrightarrow R \right] + \text{h.c.} + \sum_{i} S_{i}^{++} \left[\kappa_{X,L}^{S_{i}^{++}} \overline{X} P_{L} b + L \leftrightarrow R \right] + \text{h.c.}$$

$$(15)$$

 Possible to write a Master-Lagrangian containing all possible couplings, implemented at NLO in MG (FSMOG)

Work in progress by A. Deandrea and B. Fuks

Common exolic lop parlner decays A.Baner

A.Banerjee et al 2203.0727 (Snowmass LOI)

G.Cacciapaglia et al. 2112.00019

A specific model: M5 of Ferretti's classification

Underlying fermions (like quarks)

	$\operatorname{Sp}(2N_c)$	${\rm SU(3)}_c$	$\mathrm{SU}(2)_L$	$\mathrm{U}(1)_Y$	SU(5)	SU(6)	U(1)
$\psi_{1,2}$		1	2	1/2			
$\psi_{3,4}$		1	2	-1/2	5	1	$-rac{3q_{\chi}}{5(N_c-1)}$
ψ_5		1	1	0			
χ_1							
χ_2		3	1	-x			
χ_3					1	6	<i>a</i> .
χ_4							Чχ
χ_5		$\overline{3}$	1	x			
χ_6							

Baryons (top partners)

	$SU(5) \times SU(6)$	$SO(5) \times Sp(6)$	names
$\psi \chi \chi$	$({f 5},{f 15})$	$({f 5},{f 14})$	\mathcal{B}^1_{14}
		$+({f 5},{f 1})$	\mathcal{B}_1^1
	$({\bf 5},{\bf 21})$	$({f 5},{f 21})$	\mathcal{B}_{21}^1
$\psi \bar{\chi} \bar{\chi}$	$({f 5},\overline{{f 15}})$	$({f 5},{f 14})$	\mathcal{B}_{14}^2
		$+({f 5},{f 1})$	\mathcal{B}_1^2
	$({f 5},\overline{{f 21}})$	$({f 5},{f 21})$	\mathcal{B}_{21}^2
$\left \bar{\psi} \bar{\chi} \chi \right $	$(ar{5}, ar{35})$	$({f 5},{f 14})$	\mathcal{B}^3_{14}
		$+({f 5},{f 21})$	\mathcal{B}^3_{21}
	$(ar{f 5}, {f 1})$	$({f 5},{f 1})$	\mathcal{B}_1^3

 ${f 14} o {f 8_0} + {f 3_{-2x}} + {f ar 3_{2x}} \, ,$

 $21 o 8_0 + 6_{2{f x}} + ar 6_{-2{f x}} + 1_0$.

G.Cacciapaglia et al. 2112.00019

A specific model: M5 of Ferretti's classification

Underlying fermions (like quarks)

	$\operatorname{Sp}(2N_c)$	${\rm SU}(3)_c$	$\mathrm{SU}(2)_L$	$\mathrm{U}(1)_Y$	SU(5)	SU(6)	U(1)
$\psi_{1,2}$		1	2	1/2			
$\psi_{3,4}$		1	2	-1/2	5	1	$-\frac{3q_{\chi}}{5(N_c-1)}$
ψ_5		1	1	0			
χ_1							
χ_2		3	1	-x			
χ_3					1	6	<i>a</i> ₂ ,
χ_4							Чχ
χ_5		$\overline{3}$	1	x			
χ_6							

Baryons (top partners)

 $21
ightarrow 8_0 + 6_{2 {f x}} + ar 6_{-2 {f x}} + 1_0$

G.Cacciapaglia et al. 2112.00019

A specific model: M5 of Ferretti's classification

Underlying fermions (like quarks)

	$\operatorname{Sp}(2N_c)$	${\rm SU(3)}_c$	$\mathrm{SU}(2)_L$	$\mathrm{U}(1)_Y$	SU(5)	SU(6)	U(1)
$\psi_{1,2}$		1	2	1/2			
$\psi_{3,4}$		1	2	-1/2	5	1	$-\frac{3q_{\chi}}{5(N_c-1)}$
ψ_5		1	1	0			
χ_1							
χ_2		3	1	-x			
χ_3					1	6	<i>a</i>
χ_4							Чχ
χ_5		$\overline{3}$	1	x			
χ_6							

Baryons (top partners)

G.Cacciapaglia et al. 2112.00019

Exolic lop partners

G.Cacciapaglia et al. 2112.00019

The baryon content looks ironically SUSY-like!

G.Cacciapaglia et al. 2112.00019

Octoni bounds

G.Cacciapaglia et al. 2112.00019

Model implemented in MG.
Check limits from searches in MadAnalysis and CheckMate.
Strongest bound from gluino and stop searches!

There's something about Muons

- $R_K = \frac{\text{BR} (B^+ \to K^+ \mu^+ \mu^-)}{\text{BR} (B^+ \to K^+ e^+ e^-)} = 0.846^{+0.044}_{-0.041}$
- @ 9-2 fixes the scale of new physics
- natural values for TC-like
 theories!
- RK requires large muon couplings
 (attainable in strong dynamics)
 - These anomalies will be further probed in the near future!