Simplified models & benchmarks devoted to searches for displaced top-quarks at the LHC 14 TeV Run

(CMS Group): Jeremy Andrea, Daniel Bloch, Éric Conte, Douja Darej, Emery Nibigira; (Theory Group): Robin Ducrocq

IPHC - Strasbourg

robin.ducrocq@iphc.cnrs.fr

Top LHC France, May 9-10, 2022

Overview

Introduction

- 2 Global strategy
- Sevents generation & Physical observables definition
- Mediation by a coloured long-lived particle (R-hadron based on a squark)
- 5 Mediation by an electrically neutral and uncoloured long-lived particle
- 6 Mediation by a coloured long-lived particle (R-hadron based on a gluino)
- Conclusion & Outlook

Introduction

ATLAS & CMS:

Search of exotic particles with **long life-times** (decay in the detector volume) (Difficulties to be observed: detectors are not designed initially for this purpose)

Goal of the project:

Provide simplified models & benchmarks for future searches of **non-prompt top-quarks arising from heavy long-lived particles (LLP)** (3 scenarios) Identify **observables of interest** for an **offline & online selection**

Why top quarks?

Expertise from CMS Team of IPHC Investigate CMS & ATLAS algorithms performance to tag/reconstruct those objects Study the relevance to design a devoted reconstruction/identification algorithm

Our definition of long-lived particle:

Flight distance ct between 4 cm & 100 cm: "Tracker volume"

Find topologies of events involving a long-lived mediator which gives at least one top quark

Cross-section of the process must be **independant from the** $c\tau$ **of the LLP** Design simplified models corresponding to such topology

Analysing the parameters region & studying:

- cross-section of production at 14 TeV
- average flight-distance of the LLP in the laboratory frame
- relevent geometrical & kinematical observables

Identifying promising benchmarks for each model where the top-quarks decay in the tracker volume

Give some guidelines for the experimentalists for online & offline selection

Displaced-tops quarks signatures

Types of mediation studied:

Coloured long-lived particle (neutral or charged R-hadron)

- R-hadron containing a squark: Simplified model based on **MSSM with GMSB**
- R-hadron containing a gluino: Simplified model based on **MSSM Split-SUSY**

Uncoloured long-lived particle

• Electrically neutral : Simplified model based on **MSSM with RPV**

Events generation & Physical observables definition

Tools for events generation:

- MADGRAPH_AMC@LNO with PDF NNPDF30_lo_as_0130 (LHAPDF lhaid=263000)
- PYTHIA (MCTunes CUETP8M2T4)
- MADANALYSIS tunable detector fast-simulation + some improvements
 - FASTJET (anti- k_t algorithm, $\Delta R = 0.4$, $p_{T_{min}} = 5$ GeV)
- MADANALYSIS in expert mode
 - magnetic field B = 3.8 T (CMS value, ATLAS=3.0 T)
 - fiducial acceptance of the tracker
 - cylinder with end-caps (no blind-spot)
 - infinite resolution for observables

Events generation & Physical observables definition

Definition of observables used for these analyses (online/offline selection): Global observables:

$$MET = ||\sum_{\text{visible}} \vec{p}_T||, \quad MHT = ||\sum_{\text{hadronic}} \vec{p}_T||, \quad TET = \sum_{\text{visible}} ||\vec{p}_T||, \quad THT = \sum_{\text{hadronic}} ||\vec{p}_T||, \quad \alpha_T = \frac{p_{T_2}}{m_{jj}}$$

If the LLP decays beyond the tracker, it is considered as invisible:

- neutral uncoloured LLP do not interact with calorimeter matter
- energy deposit of R-hadron in the calorimeter is negligeable
- no interaction between R-hadron and matter: "charge sign change" or 'stopped LLP" are not taken into account

Other observables:

$$\begin{aligned} &d_0 = \operatorname{sgn}\left(\frac{p_T}{qB}\right) \left(\sqrt{x^2 + y^2} - \left|\frac{p_T}{qB}\right|\right) \\ &d_z = \mathsf{z}_{\mathsf{v}} + \frac{p_z}{qB} \arctan\left(\frac{xp_x + yp_y}{yp_x - xp_y}\right) \end{aligned} \text{ with } \begin{cases} x = \mathsf{x}_{\mathsf{v}} + \frac{p_y}{qB} \\ y = \mathsf{y}_{\mathsf{v}} - \frac{p_z}{qB} \end{cases}, \quad p_{\mathcal{T}_\ell}, \quad p_{\mathcal{T}_j}, \quad \eta_\ell, \quad \eta_j \end{aligned}$$

with $B = 3.8 T \& (x_v, y_v, z_v)$: secondary vertex position

Mediation by a coloured long-lived particle (R-hadron based on a squark) Model definition

Theoretical foundation In the context of the **MSSM** with **R-parity conserved**: NLSP $\tilde{t} \rightarrow \psi_{\mu} t$

GMSB (Gauge Mediated Supersymmetry Breaking) : gravitino is the LSP with a mass

$$\begin{split} \mathbf{m}_{3/2} \propto \frac{\mathsf{F}}{\mathsf{m}_{\mathsf{p}}} \quad (F: \text{ energy scale of messenger fields}) \\ \mathcal{L} = \mathcal{L}_{\mathsf{MSSM}} + \mathcal{L}_{3/2}^{\textit{kin.}} + \mathcal{L}_{3/2}^{\textit{int.}} \quad \text{with:} \ \mathcal{L}_{3/2}^{\textit{int}} = -\frac{\sqrt{4\pi}}{\sqrt{m_{\mathsf{p}}}} \Big(\mathcal{D}_{\nu} \phi^{i} \bar{\chi}_{Li} \gamma^{\mu} \gamma^{\nu} \Psi^{(\mathcal{M})}_{\mu} + \mathcal{D}_{\nu} \phi^{\dagger}_{i} \bar{\Psi}^{(\mathcal{M})}_{\nu} \gamma^{\nu} \gamma^{\mu} \chi^{i}_{R} \Big) \end{split}$$

with $\Psi^{(M)}_{\mu}$ the gravitino

Simplified model definition

- First & second sfermion generations not considered
- stop $\tilde{t} =$ Equal mixing between left & right stop
- Lightest stop \tilde{t} is the NLSP $\mathsf{BR}(\tilde{\mathbf{t}} o \psi_{\mu} \mathbf{t}) = \mathbf{1}$

Parameters:

*m*_t
 ct(t) or *m*_{3/2}

Mediation by a coloured long-lived particle (R-hadron based on a squark) Production & decay

Top LHC France, May 8-9, 2022

Mediation by a coloured long-lived particle (R-hadron based on a squark)

R. Ducrocq 9 / 23

Mediation by a coloured long-lived particle (R-hadron based on a squark) Production & decay

Decay width:

$$\begin{split} \mathsf{\Gamma}(\tilde{t} \to \psi_{\mu} t) &= \frac{1}{6 m_{\rho}^2 m_{\tilde{t}}^3 m_{3/2}^2} \lambda^{3/2} (m_{\tilde{t}}^2, m_t^2, m_{3/2}^2) \\ &\times (m_{\tilde{t}_1}^2 - (m_t - m_{3/2})^2) \end{split}$$

with
$$\lambda(x, y, z) = (x - y - z)^2 - 4yz$$
.
Stop \tilde{t} average flight distance:

$$ct = \langle eta \gamma
angle c au = rac{\langle eta \gamma
angle \hbar c}{\Gamma(ilde{t} o \psi_\mu t)}$$

Definition of eight benchmarks:

The black lines delimitate the "Tracker volume" [4 cm, 100 cm]

Name	$ ilde{t}^{10}_{1.0}$	${ ilde{t}}^{30}_{1.0}$	${ ilde{t}_{1.0}^{50}}$	${ ilde{t}}_{1.0}^{70}$	$\widetilde{t}_{1.4}^{10}$	${ ilde{t}}^{30}_{1.4}$	$\widetilde{t}_{1.4}^{50}$	$\widetilde{t}_{1.4}^{70}$
$m_{\tilde{t}}$ [TeV]	1.0	1.0	1.0	1.0	1.4	1.4	1.4	1.4
ct[cm]	10	30	50	70	10	30	50	70

$$m_{3/2}\approx 10-100~\text{keV}$$

Top LHC France, May 8-9, 2022

Mediation by a coloured long-lived particle (R-hadron based on a squark)

R. Ducrocq 10 / 23

Relevant distributions:

- Equivalent distributions for all particles & for d_z
- Same for $m_{\tilde{t}} = 1.0$ TeV & 1.4 TeV

Light gravitino ($m_{3/2} \sim \text{keV}$): Many benchmarks leads to equivalent distributions

\Rightarrow Reduce to two distributions

- Highly energetic events
- Main contribution from the gravitino (neutrinos negligible)

Relevant distributions:

Energetic events: **boosted topologies?** (Requiring to study the jet substructure?) Check the indicator $\Delta R(bW)$ **A lot of events with** $\Delta R < 0.4$

$$\alpha_T = p_{T_2}/m_{jj}$$

 (p_{T_2}) transverse impulsion of the second hardest jet (m_{jj}) invariant mass of the two hardest jets

Background (SM) events with $\alpha_T < 0.5$ α_T : Dependency on the jet reconstruction!

Summary table: Geometrical quantities

	${ ilde{t}_{1.0}^{10}}$	${ ilde{t}_{1.0}^{30}}$	${ ilde{t}_{1.0}^{50}}$	${ ilde{t}_{1.0}^{70}}$	${ ilde{t}_{1.4}^{10}}$	${ ilde{t}_{1.4}^{30}}$	${\widetilde t}_{1.4}^{50}$	${ ilde{t}_{1.4}^{70}}$
% events with exactly two tops decaying in the "Tracker Volume"	58.8	92.7	96.7	95.1	60.6	93.1	97.1	96.7
% events with at least one top decaying in the "Tracker Volume"	69.9	97.6	99.0	97.2	70.0	97.1	99.1	98.3
$\langle MET \rangle$ [GeV]	506.4	507.4	508.4	507.8	704.2	707.9	712.9	695.5
$\langle TET \rangle$ [GeV]	1202.2	1202.0	1201.4	1202.0	1524.0	1522.8	1525.0	1568.6
$\langle THT \rangle$ [GeV]	1117.8	1117.0	1118.2	1117.0	1410.9	1411.4	1412.2	1416.7
$\langle MHT \rangle$ [GeV]	488.9	489.6	490.9	489.5	676.2	676.7	682.8	680.4
$\langle p_T(j_1) \rangle$ [GeV]	579.2	581.6	583.0	580.3	784.8	785.0	787.1	786.1
$\langle p_T(\ell) \rangle$ [GeV]	130.6	133.5	134.5	132.3	174.5	176.9	176.2	176.7
$\langle d_0 \rangle$ [cm]	3.1	9.4	15.6	21.6	3.1	9.2	15.4	21.4
$\langle d_z \rangle$ [cm]	6.8	18.9	28.3	34.4	6.0	16.7	25.8	32.4

("Tracker Volume": distance in the transverse plane between 4 cm & 100 cm)

Top LHC France, May 8-9, 2022

Mediation by a coloured long-lived particle (R-hadron based on a squark)

Summary table: Global Observables

	$ ilde{t}^{10}_{1.0}$	${ ilde{t}_{1.0}^{30}}$	${\widetilde t}_{1.0}^{50}$	${ ilde{t}_{1.0}^{70}}$	${ ilde{t}_{1.4}^{10}}$	${ ilde{t}_{1.4}^{30}}$	${\widetilde t}_{1.4}^{50}$	${ ilde{t}_{1.4}^{70}}$
% events with exactly two tops decaying in the "Tracker Volume"	58.8	92.7	96.7	95.1	60.6	93.1	97.1	96.7
% events with at least one top decaying in the "Tracker Volume"	69.9	97.6	99.0	97.2	70.0	97.1	99.1	98.3
$\langle MET \rangle$ [GeV]	506.4	507.4	508.4	507.8	704.2	707.9	712.9	707.9
$\langle TET \rangle$ [GeV]	1202.2	1202.0	1201.4	1202.0	1524.0	1522.8	1525.0	1528.3
$\langle THT \rangle$ [GeV]	1117.8	1117.0	1118.2	1117.0	1410.9	1411.4	1412.2	1416.7
$\langle MHT \rangle$ [GeV]	488.9	489.6	490.9	489.5	676.2	676.7	682.8	680.4
$\langle p_T(j_1) \rangle$ [GeV]	579.2	581.6	583.0	580.3	784.8	785.0	787.1	786.1
$\langle p_T(\ell) \rangle$ [GeV]	130.6	133.5	134.5	132.3	174.5	176.9	176.2	176.7
$\langle d_0 \rangle$ [cm]	3.1	9.4	15.6	21.6	3.1	9.2	15.4	21.4
$\langle d_z \rangle$ [cm]	6.8	18.9	28.3	34.4	6.0	16.7	25.8	32.4

Summary table: Transverse impulsion

	${ ilde{t}_{1.0}^{10}}$	${ ilde{t}_{1.0}^{30}}$	${ ilde{t}_{1.0}^{50}}$	${ ilde{t}_{1.0}^{70}}$	${ ilde{t}_{1.4}^{10}}$	${ ilde{t}_{1.4}^{30}}$	${\widetilde t}_{1.4}^{50}$	${ ilde{t}_{1.4}^{70}}$
% events with exactly two tops decaying in the "Tracker Volume"	58.8	92.7	96.7	95.1	60.6	93.1	97.1	96.7
% events with at least one top decaying in the "Tracker Volume"	69.9	97.6	99.0	97.2	70.0	97.1	99.1	98.3
$\langle MET \rangle$ [GeV]	506.4	507.4	508.4	507.8	704.2	707.9	712.9	707.9
$\langle TET \rangle$ [GeV]	1202.2	1202.0	1201.4	1202.0	1524.0	1522.8	1525.0	1528.3
$\langle THT \rangle$ [GeV]	1117.8	1117.0	1118.2	1117.0	1410.9	1411.4	1412.2	1416.7
$\langle MHT \rangle$ [GeV]	488.9	489.6	490.9	489.5	676.2	676.7	682.8	680.4
$\langle p_T(j_1) \rangle$ [GeV]	579.2	581.6	583.0	580.3	784.8	785.0	787.1	786.1
$\langle p_T(\ell) \rangle$ [GeV]	130.6	133.5	134.5	132.3	174.5	176.9	176.2	176.7
$\langle d_0 \rangle$ [cm]	3.1	9.4	15.6	21.6	3.1	9.2	15.4	21.4
$\langle d_z \rangle$ [cm]	6.8	18.9	28.3	34.4	6.0	16.7	25.8	32.4

Summary table: Impact parameters

	${ ilde{t}_{1.0}^{10}}$	${ ilde{t}_{1.0}^{30}}$	${ ilde{t}_{1.0}^{50}}$	${ ilde{t}_{1.0}^{70}}$	${ ilde{t}_{1.4}^{10}}$	${ ilde{t}_{1.4}^{30}}$	${ ilde{t}_{1.4}^{50}}$	${ ilde{t}_{1.4}^{70}}$
% events with exactly two tops decaying in the "Tracker Volume"	58.8	92.7	96.7	95.1	60.6	93.1	97.1	96.7
% events with at least one top decaying in the "Tracker Volume"	69.9	97.6	99.0	97.2	70.0	97.1	99.1	98.3
$\langle MET \rangle$ [GeV]	506.4	507.4	508.4	507.8	704.2	707.9	712.9	707.9
$\langle TET \rangle$ [GeV]	1202.2	1202.0	1201.4	1202.0	1524.0	1522.8	1525.0	1528.3
$\langle THT \rangle$ [GeV]	1117.8	1117.0	1118.2	1117.0	1410.9	1411.4	1412.2	1416.7
$\langle MHT \rangle$ [GeV]	488.9	489.6	490.9	489.5	676.2	676.7	682.8	680.4
$\langle p_T(j_1) \rangle$ [GeV]	579.2	581.6	583.0	580.3	784.8	785.0	787.1	786.1
$\langle p_T(\ell) \rangle$ [GeV]	130.6	133.5	134.5	132.3	174.5	176.9	176.2	176.7
$\langle d_0 \rangle$ [cm]	3.1	9.4	15.6	21.6	3.1	9.2	15.4	21.4
$\langle d_z \rangle$ [cm]	6.8	18.9	28.3	34.4	6.0	16.7	25.8	32.4

Associated background

If "short-lived":

Background equivalent to stop pair search:

• $t\bar{t}$, DY with MET, tW, ...

If "long-lived":

- cosmic rays
- algorithmic
- detector (nuclear interactions)

Guidelines for experimentalists

Possible trigger path for Long-lived (Run 2):

- All top decay channels: $\ensuremath{\mathsf{MET}}\xspace > 170\ensuremath{\,\mathrm{GeV}}\xspace$
- Few displacement: (Leptonic top decay channel) muon with $p_T > 50$ GeV or isolated leptons with $p_T > 23$, 17 GeV
- Specific long-lived trigger

Offline selection

- Search at least 1 displaced top (displaced jets, leptons, vertices)
- Boosted top: jets substructure analysis
- Cut on α_T ($\alpha_T > 0.5$)
- If R-hadron & long-lived enough: track

Top LHC France, May 8-9, 2022

R. Ducrocq 17 / 23

Mediation by an electrically neutral and uncoloured long-lived particle Model definition

 $W = W_{MSSM} + W_{RPV} \text{ with}$ $W_{RPV} = \epsilon_i (H_u \cdot L_i) + \frac{1}{2} \lambda_{ijk} (L_i \cdot L_j) E_k^c + \lambda'_{ijk} (L_i \cdot Q_j) D_k^c + \frac{1}{2} \lambda''_{ijk} U_i^c D_f^c D_k^c$ Baryonic & leptonic number violation from λ , λ' , λ'' (+ sym. properties $\lambda_{ijk} = -\lambda_{jik} \& \lambda''_{ijk} = -\lambda''_{jik}$)

Only λ'_{i3k} , λ''_{312} , λ''_{313} , λ''_{323} allow top quark in the final state \Rightarrow **Only consider** $\lambda''_{312} \neq 0$: $\chi_1^0 \rightarrow tds$

Simplified model definition

- Equal mixing between gaugino & higgsino states
- No mixing of different generations & Equal mixing left & right squark
- All squarks have the same mass

Top LHC France, May 8-9, 2022

Mediation by an electrically neutral and uncoloured long-lived particle

R. Ducrocq 18 / 23

Parameters:

• $m_{\chi_1^0} \& m_{\tilde{\mu}} \& m_{\tilde{q}}$

・ロト ・ 一下 ・ ト ・ ト ・ ト

Mediation by an electrically neutral and uncoloured long-lived particle Production & decay

Two hard processes considered for production:

NLSP smuon production $(pp \rightarrow \tilde{\mu}^+ \tilde{\mu}^-)$ Smuon decay: $\tilde{\mu}^{\pm} \rightarrow \chi_1^0 \mu^{\pm}$ with $BR(\tilde{\mu}^{\pm} \rightarrow \chi_1^0 \mu^{\pm}) = 1$

Dependancy of σ :

Smuon mass m_µ

R. Ducrocq 19 / 23

Mediation by an electrically neutral and uncoloured long-lived particle Production & decay

Flight distance $ct \propto 1/(\lambda'')^2$ $m_{\tilde{\mu}}^{max.} = 500$ GeV for sufficient data signal

Lorentz factor $\langle \beta \gamma
angle pprox 1.6 - 3$

Numerical computation of $ct = \langle \beta \gamma \rangle c \tau$ Wide region allowed depending on the λ'' -value

Benchmarks definition:

Name	$\tilde{\mu}^{10}$	$ ilde{\mu}^{ m 30}$	$ ilde{\mu}^{50}$	${ ilde \mu}^{70}$
$m_{\tilde{q}}$ [TeV]	7.2	10.3	2.35	3.7
$m_{\chi_1^0}$ [GeV]	200	250	225	200
$m_{\tilde{\mu}}$ [GeV]	250	300	275	250
<i>ct</i> [cm]	10	30	_50	70_

Long-lived gluinos produced in Split SUSY models Model definition

Theoretical foundation

Split-SUSY: based on the paradigm that the naturalness problem is ignored (anthropic principle)

Squark & slepton masses can be as large as the GUT scale M_{GUT} Fermions $(\{\chi_i^0, \chi_j^{\pm}\})$ remain near the EW scale

If neutralino χ_1^0 LSP & gluino \tilde{g} NLSP:

Long-lived process (LO) $ilde{g} o ar{t}_1 t o t ar{t} \chi_1^0$ due to heavy-massive mediator

Simplified model definition

- Equal mixing between left & right stops
- χ_1^0 : Only the gauge states
- $BR(ilde{g} o ilde{t} ilde{t}) = 1$

Long-lived gluinos produced in Split SUSY models Production & decay

Production LO QCD: gluino pair production (other contribution including \tilde{q} negligeable)

Benchmarks definition

Name	<i>g</i> ¹⁰ _{1.0,0.4}	$\tilde{g}^{30}_{1.0,0.4}$	$\tilde{g}_{1.0,0.4}^{50}$	$\tilde{g}_{1.0,0.4}^{70}$
$m_{\tilde{g}}$ [TeV]	1.0	1.0	1.0	1.0
$m_{\chi_1^0}$ [TeV]	0.4	0.4	0.4	0.4
<i>ct</i> [cm]	10	30	50	70

Name	$\tilde{g}_{1.0,0.1}^{10}$	$\tilde{g}^{30,0}_{1.0,0.1}$	$\tilde{g}_{1.0,0.1}^{50}$	<i>ğ</i> ⁷⁰ 1.0,0.1
$m_{\tilde{g}}$ [TeV]	1.0	1.0	1.0	1.0
$m_{\chi_1^0}$ [TeV]	0.1	0.1	0.1	0.1
ct[cm]	10	30	50	70

Conclusion & Outlook

Summary:

Goal: models & benchmarks devoted to searches for displaced top-quarks using charged particles (decay in tracker volume)

Mediation by different type of LLP: R-hadrons (squark or gluino) & uncoloured neutral particle (neutralino)

For each model, some benchmarks have been defined and can be used by ${\rm ATLAS}/{\rm CMS}$ collaboration

Guidelines for offline & online selection

Perspective:

A paper in preparation

Work for gluino-based R-hadron & uncoloured LLP must be finalized Why not electrically charged and uncoloured LLP?

Begin to investigate specific LLP signature like displaced vertex with Delphes

THANK YOU FOR YOUR ATTENTION