

May 10th, 2022

Motivation: Higgs Boson discovery → precision measurements !

- ttH production provides direct access to top-Higgs Yukawa coupling yt
- Largest in SM and sensitive to potential New Physics
- ttH~1% of total Higgs boson production cross section

- Run 2 dataset offered possibility to probe Higgs coupling to third generation fermions in more detail
- First observation by ATLAS and CMS of Higgs+top associated production in Spring 2018 with partial Run 2 datasets

ATLAS: 6.3σ (5.1σ exp.) (Run1 + 79.5 fb-1 Run2) CMS: 5.2σ (4.2σ exp.) (Run1 + 35.9 fb-1 Run2)

Motivation:

- Not only ttH but also **tH production** is a powerful probe
- tH very challenging due to low cross section but sensitive to relative sign of H-t and H-W interaction
- $\sigma(t_H) \approx 10 \times \sigma(t_H)SM$ if sign of y_t is switched
- ttH production also allows to probe the CP structure of the top-Higgs coupling (CP measurements discussed in previous <u>talk by</u> <u>Laurent</u>:
 - Impacts cross-section and kinematics of top + Higgs
 - CP-odd component: direct indication of new physics
- Combined analysis of ttH + tH processes can be used to lift degeneracy between α and 180°-α hypothese

- Target as many decay modes as possible to optimally exploit small cross section
- Characterised by BR and signal purity → modelling of the backgrounds is a key element

Recent highlights from ATLAS and CMS at $\sqrt{s} = 13 \text{ TeV}$

<u>Channel</u>	Benefits/Challenges	Latest ATLAS/CMS results			
H→bb	Largest BR / Low purity + combinatorics + large theoretical uncertainties on irreducible tt+bb background	ATLAS 139 fb ⁻¹	<u>ATLAS-HIGG-2020-23</u>		
		CMS 77.4 fb ⁻¹	<u>CMS-PAS-HIG-18-030</u>		
Multi-lepton H→ww/zz/ττ	Clean final state with leptons + moderate irreducible background/ Challenging modelling of ttW and reducible backgrounds	ATLAS 80 fb ⁻¹	<u>ATLAS-CONF-2019-045</u>		
		CMS 137 fb ⁻¹	<u>Eur. Phys. J. C 81 (2021) 378</u>		
Н→үү	Clean signature + possible to reconstruct all Higgs decay products/ Low BR	ATLAS 139 fb ⁻¹	<u>ATLAS-CONF-2020-026</u> <u>ATLAS-HIGG-2019-13</u>		
		CMS 137 fb ⁻¹	<u>JHEP 07 (2021) 027</u>		
H→zz→4l	Very clean signature + possible to reconstruct all Higgs decay product + very high purity/ Very low BR	ATLAS 139 fb ⁻¹	<u>Eur. Phys. J. C 80 (2020) 957</u>		
		CMS 137 fb ⁻¹	<u>Eur. Phys. J. C 81 (2021) 488</u>		

as ttH H→bb

Analysis strategy: Full Run 2 dataset (139 fb⁻¹)

First differential measurement of ttH (H→bb) decays

- Explored through Simplified Template Cross Sections (STXS) formalism where cross-section is measured as a function of the p_T^H
- Events categorised in signal regions
 (SRs) are defined by the #leptons, #jets,
 #b-tagged jets (4 working points) and
 #boosted Higgs boson candidates
- Includes single-lepton resolved, boosted and di-lepton channels

Region	Dilepton		Single-lepton					
Tugion	$\mathrm{SR}_{\geq 4b}^{\geq 4j}$ $\mathrm{CR}_{3b \mathrm{\ hi}}^{\geq 4j}$ $\mathrm{CR}_{3b \mathrm{\ lo}}^{\geq 4j}$ $\mathrm{CR}_{3b \mathrm{\ hi}}^{3j}$		$\mathrm{SR}^{\geq 6j}_{\geq 4b}$	$CR_{\geq 4b \text{ hi}}^{5j}$ $CR_{\geq 4b \text{ lo}}^{5j}$ SR_{boosted}		$\mathrm{SR}_{\mathrm{boosted}}$		
#leptons	= 2		= 1					
#jets		≥ 4		= 3	≥ 6	= 5		≥ 4
@85%	_		≥ 4					
#h tog	_				- 22			$\geq 2^{\dagger}$
#0-tag @70%	≥ 4	= 3			≥ 4		_	
@60%	_	= 3	< 3	= 3	_	≥ 4	< 4	_
#boosted cand.			_			0		≥ 1
Fit input	BDT		Yield		BDT/Yield	$\Delta R_b^{\rm a}$	b b	BDT

- BDTs used for reconstructing Higgs
 boson candidate and signal extraction
- Control regions (CRs) to constrain tt+≥1b and tt+≥1c exploiting ΔR(bb)_{avg} / yield for the fit in single/di-lepton channel

Modelling of tt+bb background

- Irreducible background: tt+heavy flavour (hf) jets
- tt+bb background modelled with 4FS NLO simulation with extra b-jets from ME
- Dedicated samples used to used dominant shape systematic uncertainties:
 - showers, NLO matching
 - Relative fractions of tt+hf components

ATLAS-HIGG-2020-23 (submitted to JHEP)

- **Normalisation** of **tt+≥1b** estimated with free-floating parameter in the signal extraction fit to data: k(tt+bb)=1.26 ± 0.09
- tt+cc 100% normalisation priori uncertainty
- Observed **p**_{T(H)} **mismodelling** covered by dedicated shape uncertainty on tt+bb
- Good post-fit agreement observed, with uncertainty dominated by tt+hf modelling systematics

ATLAS-HIGG-2020-23 (submitted to JHEP)

 Measurement uncertainty is dominated by systematic uncertainties, especially from tt+≥1b modelling

- Individual STXS signal strengths compatible with SM or μ=0 within 2σ, sensitivity beyond p_T=300 GeV, thanks to boosted categories
- Sensitivity: **1.3σ observed (3.0σ exp.)**

ttH H→bb

CMS-PAS-HIG-18-030

Analysis strategy: Partial Run 2 dataset (77.4 fb⁻¹)

- Single-lepton channel: ANN used as multiclassifier to define background enriched nodes & for signal extraction
- **Di-lepton channel:** BDTs for signal extraction
- Fully hadronic channel:
 - data-driven multi-jet background estimate
 - MEM shape for signal extraction

- Largest impact uncertainties:
 - cross-sections of signal
 - tt+hf covered by a 50% rate uncertainty
 - b-tagging
 - data-driven multijet background
- Sensitivity: 3.9σ observed (3.5σ expected)

ATLAS **ttH H \rightarrow ww/zz/tt** (Multi-lepton)

Analysis strategy: Partial Run 2 dataset (ATLAS 80 fb⁻¹) / Full Run 2 dataset (CMS 137 fb⁻¹)

- 10 (CMS) / 8 (ATLAS) analysis categories based on #lepton and #hadronic tau (τ h)
- **Backgrounds sources:** lacksquare
 - Irreducible: ttW, ttZ, WZ, ZZ
 - **Reducible**: ttbar/QCD + non-prompt leptons (MVA based selections used to separate from prompt leptons), charge mis-ID, fake τ h
- Irreducible background shape estimated from **MC** simulation
- CRs are defined to constrain ttZ, WZ and ZZ

- CMS
 - Simultaneous measurement of ttH and tH
 - **DNN multi-class** to separate ttH, tH and backgrounds in $2\ell SS + 0\tau_h$, $3\ell + 0\tau_h$, and $2\ell SS + 1\tau_h$ channels & rest categories rely on a BDTs

ATLAS-CONF-2019-045

Eur. Phys. J. C 81 (2021) 378

CMS-PAS-HIG-19-008

Structure to the second se

CMS

- ttW constrained via dedicated CR using DNN multi-class in 2ℓSS+0τ_h channel
- ttW & ttZ freely floating in fit: $\mu_{ttW} = 1.43 \pm 0.21$, $\mu_{ttZ} = 1.03 \pm 0.14$)
- Misidentified lepton background data-driven estimation with misID probability method: fake rate measured in data, w/ extrapolation correction + uncertainty

• Dominant ttW in 2ISS and 3I channels constrain via 3 freelyfloating parameters in fit (taking into account QCD and EW corrections): $\lambda^{2\ell SS, 2 \le n_{jets} \le 3} = 1.56 \pm 0.29$

 $\lambda^{2\ell \mathrm{SS},4 \leq n_{\mathrm{jets}}} = 1.26 \pm 0.19$

 $\lambda^{3\ell} = 1.68 \pm 0.29$

• Extrapolation uncertainties for charge asymmetry and bjet multiplicity

Modelling of the ttW background is the main challenge Significant mis-modelling of ttW background **ATLAS**

ttH H→ww/zz/tt (Multi-lepton)

ATLAS-CONF-2019-045

Eur. Phys. J. C 81 (2021) 378

ATLAS-CONF-2020-026 JHEP 07 (2021) 027

Analysis strategy: Full Run 2 dataset (ATLAS 139 fb⁻¹) / (CMS 137 fb⁻¹)

ttH H \rightarrow yy studied as part of inclusive STXS measurements

Categorisation via STXS bin assignment

- Multi-class BDT targeting 44 STXS classes \bullet
- **Binary BDT** is trained against the continuum background in each class: Rejecting variables correlated with m_{xx}
- STXS bin assigned with pTXX using ordering categorisation
- Discrimination between ttH & tH achieved via **DNN** •

 p_T^H

60

120

200

450

CMS

- Two channels defined: ttH hadronic and leptonic
- Categories within each class defined ulletbased in background BDT score
- **Diphoton vertex** identification using BDT
- Fit of $\mathbf{m}_{\mathbf{x}\mathbf{x}}$ used for signal extraction

- Signal shape in each analysis category modelled from MC
- ttH differential cross section measured in 4 p_T-bins: last 3 high-p_T bins of the 1.2 STXS scheme merged into one
- Background modelling via analytic function to fit the background myy distribution

JHEP 07 (2021) 027 137 fb⁻¹ (13 TeV)

m_{γγ} (GeV)

ATLAS-CONF-2020-026

S+B fit

CMS

Statistically limited: Uncertainties

Stat. Limited measurements in agreement with SM 95% CL upper limit

- ATLAS: 8 X SM
- **CMS: 14 X SM**

→ **XX** (fiducial differential measurement)

NEW! ATLAS-HIGG-2019-13 (submitted to JHEP)

Analysis strategy: Full Run 2 dataset (139 fb⁻¹)

- Dedicated analysis to perform • inclusive fiducial differential measurement instead of STXS
- Measured in fiducial phase space • region defined by detector response (unfolding): Reduced model dependence
- Inclusive fiducial + 20 differential + • 4 double differential XS measurements

- Background in the Higgs boson signal extraction fit is modelled analytically
- Signal extraction via fit to $m_{\chi\chi}$ distribution in each fiducial region
- Dominated by instrumental uncertainties (photon and **JES**)

Observed fiducial **ttH enhanced region** XS: 0.53±0.27(stat)±0.06(sys) fb compatible with SM (0.6±0.05)

Matches reco selections: Identical to the STXS selections

> 0.35

> 0.25

< 0.05

Photon isolation

 $\sum p_{T}^{i}$

is sum of the p_T of charged particles within $\Delta r < 0.2$ of χ

Analysis strategy: Full Run 2 dataset (ATLAS 139 fb⁻¹) / (CMS 137 fb⁻¹)

Conclusion

- Measurement of ttH (and tH) production is crucial in determining the Higgs boson's properties
- Experimentally challenging due to small production cross section
- Great progress has been made in the measurement of the top-Higgs associated production

- Several ttH analyses are close to the observation in the single decay modes (multi-lepton, bb): Improved dedicated measurement of the tt+HF and ttW backgrounds crucial
- Looking forward to Run 3 and beyond for precision measurements: Expect to profit from latest developments

Thank you for your time!

ATLAS-HIGG-2020-23 (submitted to JHEP)

ATLAS-HIGG-2020-23 (submitted to JHEP)

CMS-PAS-HIG-18-030

41.5 fb⁻¹ (13 TeV)

CMS Preliminary

Jet energy scale and resolution $+0.13$ $t\bar{t}(Z/\gamma^*)$ (high mass) modelling $+0.09$	$-0.13 \\ -0.09$
$t\bar{t}(Z/\gamma^*)$ (high mass) modelling +0.09	-0.09
$t\bar{t}W$ modelling (radiation, generator, PDF) +0.08	-0.08
Fake τ_{had} background estimate $+0.07$	-0.07
$t\bar{t}W$ modelling (extrapolation) +0.05	-0.05
$t\bar{t}H$ cross section $+0.05$	-0.05
Simulation sample size $+0.05$	-0.05
$t\bar{t}H$ modelling $+0.04$	-0.04
Other background modelling +0.04	-0.04
Jet flavour tagging and τ_{had} identification $+0.04$	-0.04
Other experimental uncertainties $+0.03$	-0.03
Luminosity $+0.03$	-0.03
Diboson modelling +0.01	-0.01
$t\bar{t}\gamma^*$ (low mass) modelling +0.01	-0.01
Charge misassignment $+0.01$	-0.01
Template fit (non-prompt leptons) $+0.01$	-0.01
Total systematic uncertainty +0.25	-0.22
Intrinsic statistical uncertainty +0.23	-0.22
$t\bar{t}W$ normalisation factors $+0.10$	-0.10
Non-prompt leptons normalisation factors (HF, material conversions) $+0.05$	-0.05
Total statistical uncertainty +0.26	-0.25
Total uncertainty +0.36	-0.33

H→Multi-lepton

Eur. Phys. J. C 81 (2021) 378

Source	$\Delta \mu_{t\bar{t}H}/\mu_{t\bar{t}H}$ [%]	$\Delta \mu_{\mathrm{tH}}/\mu_{\mathrm{tH}}$ [%]	$\Delta \mu_{t\bar{t}W}/\mu_{t\bar{t}W}$ [%]	$\Delta \mu_{t\bar{t}Z}/\mu_{t\bar{t}Z}$ [%]
Trigger efficiency	2.3	8.1	1.2	1.9
e, μ reconstruction and identification efficiency	2.9	7.1	1.7	3.2
$ au_{ m h}$ identification efficiency	4.6	9.1	1.7	1.3
b tagging efficiency and mistag rate	3.6	13.6	1.3	2.9
Misidentified leptons and flips	6.0	36.8	2.6	1.4
Jet energy scale and resolution	3.4	8.3	1.1	1.2
MC sample and sideband statistical uncertainty	7.1	27.2	2.4	2.3
Theory-related sources	4.6	18.2	2.0	4.2
Normalization of MC-estimated processes	13.3	12.3	13.9	11.3
Integrated luminosity	2.2	4.6	1.8	3.1
Statistical uncertainty	20.9	48.0	5.9	5.8

 $\underset{\text{EXPERIMENT}}{\overset{}{\text{H}}} H \rightarrow \gamma \gamma$

ATLAS-CONF-2020-026

Eur. Phys. J. C 80 (2020) 957

Eur. Phys. J. C 81 (2021) 488

Expected Composition