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Short preamble on CP transformation

When we write generically the SM Lagrangian as:

L =𝚺 ai Oi + h.c. where ai are parameters then Oi are called operators…
There are said to be of dimension 4 when they are homogeneous to M4 etc.

Under CP: most of these operators follow: O -> O+ = (CP)+ O (CP) (self adjoint-operators are CP invariant )
This is not trivial, the best is to prove this for each operator we select in L.
Remark: This will not be the case for operators of the form: G . $G

Then, L -> L if and only if ai are real… in this case CP is a symmetry by definition.

And conversely CP is not a symmetry (violation of CP) if there are some parameters which are complex.
-> complex structure of L / or there are phases (arguments of the complex numbers) in L.
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Reminder: top mass in the SM

After expanding H(0, v+ φ / 2) with φ <<v  è Lmass= - mt/v ( &ψt ψtφ)    φ is a scalar and ψ has 4 components

For more generality, let us multiply this by 𝜅 (with 𝜅=1 in the SM)

Lmass≃ - 𝜅t mt/v ( &ψt ψtφ)

In extension of the SM, 𝜅t is not unity:
Example: here 𝜅 could be something like : c ϕ+ϕ /M2 ∼ c v2/M2

Then, in general, let us write:

Lmass= - 𝜅t yt ( &ψt ψtφ)  where 𝜅t is dimensionless (φ is often written X0 is codes)

with CP-violating terms. In general, we can write

Lmass
(all)= - 𝜅t yt ( &ψt ψtφ) cos(𝛼) – i 𝜅t yt ( &ψt 𝛾5 ψtφ) sin(𝛼).

with yt the SM Yukawa coupling.
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Lmass
(all)= - 𝜅t  yt { ( &ψt ψtφ) cos(𝛼) – i ( &ψt 𝛾5 ψtφ) sin(𝛼) }

Why L is not invariant under CP transformation (== it violates CP) ?

This is because, CP is violated when there is a complex structure in L (preamble):

Simple proof to arrive to the form above: Let us take C=a+ib (complex structure)

Note: as 𝛾52=Id (4x4 identity matrix) -> cos(𝛼) – i 𝛾5 sin(𝛼)  = exp( i 𝛼 𝛾5 )…
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There is a complication:

The modification with non zero 𝛂: 
cos(𝛼) – i 𝛾5 sin(𝛼)  = exp( i 𝛼 𝛾5 )

will also impact all other terms in the SM Lagrangian involving the field: ϕ(0, v+ φ / 2) 

For example, couplings for hWW, hZZ, hgg + effective couplings in H𝛾𝛾 H𝛾Z etc.

The propagation of f(𝛼) to all these terms is not simple…

Then, are we guaranteed that all SM symmetries are preserved?
SU(2) x U(1) + symmetries in the chiral limit

The answer seems to be Yes…

One (conceptual) remark: 
(i) SM with one Higgs doublet is very special, since hermiticity makes all parameters in Higgs potential real.

(ii) If there is more than one Higgs doublet, in general VH may include CP-violating phases.
However, even then there are constraints… 

(iii) Then, this is not immediate to justify CP violating phases in the Higgs sector (from first principles).
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Now that we have something like:

How can we observe effects of  𝛼 ?

The first step is to compute d𝛔/dO (pp->gg->ttH) for an observable O.
This reads as:

where F(.) and G(.) depend only of scalar products of momenta and therefore are even under P and CP.

The last term (linear in sin𝛂) contain the “CP-odd” terms (not all of them are odd under CP).

We have:
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These are the famous trilinear products which are odd under P and for some of them under CP. 

With 6 independent momenta , we can form in general 15 such terms and some of them
are more interesting than others.

Then, there are 2 approaches:

(a) one approach is based on the first part of the xs: 

in physics configurations where the trilinear terms == 0.
This is essentially the approach followed by ATLAS/CMS and the one we describe later for our target studies

(b) a second approach is based on the trilinear couplings:

in other words: on the second part of the xs.
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PITT-PACC-1807(b) based on trilinear couplings:

Let us consider the trilinear coupling built on the following momenta:

Then it is easy to build the CP-odd variable(s) following this à

This gives:

lab frame tt rest frame
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(b) based on trilinear couplings (another example based on the spin vectors of the tops) :

tt rest frame
CP-even

tt rest frame
CP-odd
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(a) based on the first part of the xs // ATLAS and CMS results

These analyses are based on spin-averaged cross sections for ttH, then on the expression:
for the event yield in ttH.

ATLAS/CMS analyses are more refined with the inclusion of tH yield.

A general parameterization of the #events is taken to be of the form:

where A(.),…,F(.) == terms that are the analogous to what
I have noted F(.) and G(.) above and in the previous slide.

Here we keep also the possibility for a non unity 𝜅t.

ATLAS-CONF-2022-016
CMS PAS HIG-21-006
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The idea to include tH final states in the analysis is of course interesting as
it includes all possible ttH Yukawa couplings in the study.

However, this makes everything more complicated  because of the interference between (tH WH)
à Therefore the analysis (related to tH final states) is considering also final states like:

In addition to:
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The idea of these analyses is to select events with high jets multiplicities, including b-quark jets expected 
in the final state of ttH and tH with H decaying in bb -ATLAS-.

and/or multi-leptons + jets, also tagging final states with H -> multi-leptons (WW, tautau, ZZ) –CMS-.

Then, a given set of kinematical variables are considered as discriminant between the different 
schemes (𝛂,𝛋) and included in a BDT:

depending of the final states, there can be up to 25 variables included.

We can remark that each variable alone do not provide a clear discrimination and that’s why a combination
is necessary.

Then a template likelihood fit is supposed to provide a determination of (𝛂,𝛋).

This is extremely complex in practice.

ATLAS-CONF-2022-016
CMS PAS HIG-21-006ATLAS and CMS strategies
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ATLAS and CMS results
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(a) Continuing through this approach but with a new motivation

arXiv:2008.13442v1

We observe clearly the effect of f(𝝰)

As an exercise, this is interesting to find 
Φc(𝛂) from algebra that 

The goal is to search for a set of variables
that are discriminant on their own 
between the different schemes… (if possible)



p1

p2

p3

p4

pH

q1=p1-p3

q2=p2-p4

Building blocks:
. exp( i 𝛼 𝛾5 ) 

Then, let us start with (this will not be the full story)

-i M = -igs
2 yt/√2 𝜖𝜇a(p1,s1)  𝜖𝜈b(p2,s2) 

. Ta Tb

. "u p3 γ𝜇 !!"#
!!"$#" exp( i 𝛼 𝛾5 )

!""#
!""$#" γν v(p4)

This is a product of 4x4 matrices

The idea is then to compute IMI2 and sum over colors and gluon polarizations
This looks bad but this is not so much…
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Start of the exercise



The square of IMI gives color terms in:   Tr(Ta Tb Ta Tb) which is a constant (N cF
2)

I𝜖𝜇a(p1,s1)  𝜖𝜈b(p2,s2)I2 summed over polarizations leads to g𝜇𝜈when we keep also the unphysical polarizations.

Then:

IMI2 ∼ C 1/P  Tr ［ (p3+m) γ𝜇 (q1+m) exp( i 𝛼 𝛾5 ) (q2+m) γν (p4-m) γ𝜈 (q2+m) exp( i 𝛼 𝛾5 ) (q1+m) γ𝜇］

If 𝜶=0, there are 10, 8, 6… 𝛾 matrices in the trace… this is a bit of algebra to write everything… but not difficult.
The result will be a function of product of pairs of momenta.
Note: there are some tricks: 𝛾𝜈 (p4) 𝛾𝜈 = -2 p4 ab = -ba + 2ab    etc.

At the end, in the rest frame of the H, there is no term left in p1.p3 or p2.p4 (vectors – momenta - scalar product)
(warning there is still a Φc dependence hidden in the propagators P)

The full story consists in doing that also for the change 3<->4 + the interference between both… no change.
(only the order of 𝛾 matrices is changing)
+ correcting from non physical polarizations of the gluons: Here I am not sure but I found no change

which seems to be correct as we know the result (no Φc dependence ).
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What is changing with 𝛂 non zero in: 

Tr ［ (p3+m) γ𝜇 (q1+m) exp( i 𝛼 𝛾5 ) (q2+m) γν (p4-m) γ𝜈 (q2+m) exp( i 𝛼 𝛾5 ) (q1+m) γ𝜇］

àThere will be terms with 1 𝛾5 and 2 𝛾5. 

Terms with 2 𝛾5 does not change anything… we can make the 𝛾5 sliding in the trace as it anti-
commutes with all other 𝛾’s.

But terms with 1 𝛾5 will give several Levi-Civita tensors 𝜖abcd in terms with 10, 8, 6… 𝛾’s. 
due to relations like: Tr(𝛾5 𝛾a 𝛾b 𝛾c 𝛾d) = -4 i 𝜖abcd

This will make all the difference!
by mixing initial and external momenta… leading to an explicit Φc dependence.
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We have reproduced the result using MG5

First results at generated level 

computed from the generated tops                               computed from the generated leptons (from tops)



At Rec level, things are more complicated (this is ongoing)

A first result  using leptons from tops to build Φc after Delphes
(here the change of Ref frame is still done using the 4-vector of the generated H)
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Rec level using leptons after Delphes
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We have also developed an in situ analysis chain to make the data (and/or MC) analysis…
Here the sequence for 3-leptons+X in the final state.
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This leads to something like this at generated level when the sequence is applied



22

Outlook

Our present work consists in developing a personal code in order to be able to make all studies locally first and then in ATLAS.
The group is thus also involved in the new ATLAS data analysis (starting by defining the framework for it)
There are still a lot of steps ahead but we are progressing… 

Other variables are also under study (also in the CP-even approach)… + all ideas that we have in hands but not exploited yet
++ we will follow what the intermediate results tell us… (“Naturam si sequimur ducem, nunquam aberrabimus”)

Lab frame
generated level

Lab frame
rec. level


