b-fragmentation studies in tt events in ATLAS and CMS

Frédéric Derue Laboratoire de Physique Nucléaire et de Hautes Énergies (LPNHE), Paris

Top LHC France 2022 9th May 2022, IP2I Lyon, France

1

 \circ motivations

- or, measurements
- using tt pairs for tuning
- analytic calculations

b-fragmentation studies, Top LHC France, 9th May 2022

Modelling of tt events

LPNHE

ATLAS and CMS use same generators but different settings and procedures

Hadronization models

After the parton shower, due to confinment, the partons start to create stable hadrons

• Cluster model (used by HERWIG)

- \circ perturbative evolution ends at Q² = Q²₀
- \circ partons clustered in colourless groups \Rightarrow colour preconfinement
- \circ forced gluon splitting (qq) at the end of the parton shower
- colour-singlet clusters decay into the observed hadrons

• String model (used by PYTHIA)

- \circ for q and $\ensuremath{\bar{q}}$ moving in opposite direction
- the colour field collapses into a string, with uniform energy density
- \circ virtual gluons produced \Rightarrow colour confinment
- \circ new qq pairs are produced
- \circ the string breaks into the observed hadrons

Cluster and string models also used in conjunction with other Monte Carlo programs (MadGraph, ALPGEN, POWHEG, SHERPA, aMC@NLO)

b-fragmentation studies, Top LHC France, 9th May 2022

b-quark fragmentation studies

• Motivations

- \circ the fragmentation of b-quarks into hadrons is of interest for many reasons
- b-hadrons leave a striking experimental signature and ...
- a unique correspondence to the originating b-quarks
 - ergo a precise probe of QCD

Lund-Bowler model

- feasibility of PYTHIA to use Peterson, Kartvelishvili, Lund-Bowler models
- \circ standard analyses use tuning to $e^+e^- \rightarrow Z \rightarrow bb$ data and best-fit parameters to predict b-fragmentation in hadron collisions, such as top events
- events in a clean environment with back-to-back events : production of bb colour singlets, no colour reconnection to the beam or underlying events
- \circ then extrapolated to the LHC environment
 - to what degree is this correct ?
 - tuning Monte Carlo models directly to LHC data, e.g. t t, b b or γ/Z+b not yet carried out, but can be useful to validate Monte Carlo programs and test hadronization models and factorization

some tension between $e^+e^- \rightarrow Z \rightarrow bb$ measurements of b-fragmentation

parton-shower generators, using same tunes as at LHC, are also not in good agreement

PNHE

ATLAS r_h parameter tuning

Lund-Bowler parametrization

 cannot be calculated by theory, can only be modelled analytic description in PYTHIA

$$f(z) = \frac{1}{z^{1+br_b m_b^2}} (1-z)^a \exp(-bm_T^2/z)$$

 \circ standard r value used in ATLAS with A14 tune* : $r_{h} = 0.855$, α_{s} (FSR)=0.127

• r_h tuning

 refit of the b-fragmentation function to improve the modelling in POWHEG+PYTHIA with the A14 tune, using data from LEP and SLD, and lead to an optimal value $r_{h} = 1.05 \pm 0.02$

 new A14-r_b tuning used to estimated systematic uncertainites from « PS and hadronization » and « b-fragmentation »

• used for $m_{\!_{\!\!\!\!+}}$ with $b\to\mu X$

 \circ m_t = 174.48 ± 0.40 (stat) ± 0.67 (syst) GeV

 $\circ \sigma$ (PS and hadronization) = 0.07 ± 0.07 GeV σ (b-fragmentation) = 0.19 ± 0.02 GeV

ATL-PHYS-PUB-2021-016, CMS NOTE-2021/005 * for comparison of ATLAS and CMS MC tunes, see

b-fragmentation studies, Top LHC France, 9th May 2022

 $b \rightarrow \mu$ momentum transfer key for new top mass measurements, which rely on precise $b \rightarrow B$ prediction

ATLAS-CONF-2019-046

CMS r_h parameter fitting

cannot be calculated by theory, can only be modelled

 Lund-Bowler fragmentation analytic description in PYTHIA

$$f(z) = \frac{1}{z^{1+br_b m_b^2}} (1-z)^a \exp(-bm_T^2/z)$$

 \circ standard r, value used in CMS with CP5 tune* : $r_{h} = 0.855$, α_{s} (FSR)=0.118

• using J/ψ and D^0 mesons

- explicit reconstruction of the two mesons
 - two muons p_{τ} >3 GeV,

2.8<m <3.4 GeV

• for D⁰, with and without a muon-tagged decay, requiring the presence of a nonisolated muon with $p_{\tau} > 3 \text{ GeV}$ in the same jet as the $K^{\pm}\pi^{\mp}$ pair

* for comparison of ATLAS and CMS MC tunes, see ATL-PHYS-PUB-2021-016, CMS NOTE-2021/005

b-fragmentation studies, Top LHC France, 9th May 2022

W b-jet

tī c-jet

LPNHE

CMS-PAS-TOP-18-012,

June 2021

CMS r_h parameter fitting

• Observables

- use mesons as final-state proxies for the decayed b-hadron
- \circ distributions of momentum fractions used to fit $r_{_{\rm h}}$
 - the input to the fit is a set of thirteen simulated $x_{_B}$ templates with values of $r_{_b}$ between 0.655 and 1.055
 - PYTHIA 8 generator-level calculations, which were used to reweight fully reconstructed simulated event

Result

$$\circ$$
 r_b = 0.858 ± 0.037 (stat) ± 0.031 (syst)

b-fragmentation studies, Top LHC France, 9th May 2022

- \circ agreement with the e⁺e⁻ data
- significant precision improvements wrt LEP/SLD Z-pole tunes

 $(\mathsf{D}^{0}_{_{\mathrm{II}}} \, \boldsymbol{\rho}_{_{\mathrm{T}}} + \boldsymbol{\mu}_{_{\mathrm{tag}}} \, \boldsymbol{\rho}_{_{\mathrm{T}}}) / \Sigma \, \boldsymbol{\rho}_{_{\mathrm{T}}}^{\mathrm{ch}}$

 no evidence for an environmental dependence of the fragmentation function

ATLAS b-fragmentation using mesons

Analysis

- \circ explicit reconstruction of $B^{\pm} \rightarrow J/\psi K$
 - two muons p_{τ} >6 GeV, 2< m_{μ} <9 GeV
 - third track, cut on vertex $\chi 2$ & pair/triplet

Unfolding

 unfold to particle level with kinematic cuts on μ and K p₋ $z = \frac{\vec{p}_B \cdot \vec{p}_j}{|\vec{p}_j|^2}; \quad p_{\rm T}^{\rm rel} = \frac{|\vec{p}_B \times \vec{p}_j|}{|\vec{p}_j|},$

 \circ observables

Systematic uncertainties

- unfolding more limited by transfer resolution for $p_{\tau}(rel)$ than z
 - limiting systematics a balance between B reco, jet reco and unfolding uncertainties

b-fragmentation studies, Top LHC France, 9th May 2022

JHEP 12 (2021) 131 GeV 4000 ATLAS \s = 13 TeV, 139 fb Data Fit model 3500 $50 \text{ GeV} < p_{_{T}}^{\text{jet}} < 70 \text{ GeV}$ Entries / 0.01 Signal $3000 = 2.2 \text{ GeV} < p_{\tau}^{\text{rel}} < 3.0 \text{ GeV}$ Combinatorial $B \rightarrow J/\psi X$ 2500 $H^{\pm} \rightarrow J/\Psi \pi^{\pm}$ 2000 1500 1000 500 (Data - Fit) / Error 5.1 5.2 5.3 5.4 5.6 5.7 5.5

8

 $M_{\mu\mu\kappa}$ [GeV]

ATLAS b-fragmentation using mesons

Results

 \circ longitudinal and tranverse fragmentation functions in jet-p_ bins

- Herwig 7 showers and Sherpa cluster hadronisation show deviations wrt data
- \circ average values of fragmentation functions vs jet $p_{_{\rm T}}$
 - flags around 10% mismodelling

b-fragmentation studies, Top LHC France, 9th May 2022

JHEP 12 (2021) 131

Analysis

 measurements of b-jet moments sensitive to b-quark fragmentation in tt events (eµ channel, 2015-2016 data)

Unfolding

- \circ observables are relative to the jet and use information from associated charged tracks
 - sensitive to momentum of b-hadron relative to the local hadronic activity and parameters r_{h} , α_{s} (FSR)

$$z_{\mathrm{T},b}^{\mathrm{ch}} = \frac{p_{\mathrm{T},b}^{\mathrm{ch}}}{p_{\mathrm{T},j\mathrm{et}}^{\mathrm{ch}}} \qquad z_{\mathrm{L},b}^{\mathrm{ch}} = \frac{\vec{p}_{b}}{|\mathbf{p}_{b}^{\mathrm{ch}}|}$$

 transverse momentum of b-hadron relative to the average p_{τ} of the leptons, to the choice of α_{s} (FSR) but not α_{c} (ISR), to wide-angle radiation in top decays

$$\rho = \frac{2p_{\mathrm{T},b}^{\mathrm{ch}}}{p_{\mathrm{T}}^e + p_{\mathrm{T}}^{\mu}}$$

 $\rho = \frac{2p_{T,b}^{ch}}{p_T^e + p_T^{\mu}}$ • number of charged, stable b-hadron decay products, groups it ive to the b-hadron species production rates

b-fragmentation studies, Top LHC France, 9th May 2022

LPNHE

10

12

ATLAS b-fragmentation in tt events with mesons

Study of t̄t pairs with in final state a B-hadron decaying in J/ψ (b $\rightarrow J/\psi \rightarrow \mu\mu$) offers alternative channel to measure m_t using the sensitivity of m_t to m_t

Motivations

- purely leptonic/tracking observables less sensitive
- to JES than the ones from jet reconstruction
 sensitive to parton shower, hadronization,
 - b-fragmentation effects...
- help to reduce the uncertainties in combination of all measurements
- Low BR final states

 \circ BR(b \rightarrow J/ $\psi \rightarrow \mu\mu$) \sim 6.8×10⁻⁴

ATLAS-CONF-2015-040

Old work done at LPNHE, currently ongoing with Run 2 data using J/ ψ and D mesons to measure m_t and b-fragmentation studies

b-fragmentation studies, Top LHC France, 9th May 2022

14

Impact for m, measurements

at our current precision, generators well-tuned to e⁺e⁻ predictions in tt events and top-quark decays

 \circ we now have unfolded data to guide our choice of related uncertainties.

- \circ precise b-fragmentation \rightarrow smaller uncertainties on the b-quark to b -jet transfer
- \circ a better understanding of t → b^{quark} → b^{hadron} crucial for fully-leptonic template mass extractions (m(ℓµ) or m(ℓ,J/ψ))

joint fragmentation+mass measurements in leptonic modes should be investigated

b-fragmentation studies, Top LHC France, 9th May 2022

Status of analytic calculations

- Mitov et al. showed the first quasi-analytic calculations of similar distributions at TOP2020 and did recent publication
- \circ will be very interesting to compare to unfolded data
- challenges for comparison:
 - calculations are for production of exclusive B-hadron species
 - jets are defined at parton-level in calculation
 - cannot use observables based on charged particles

Conclusion

- Measurements sensitive to jet fragmentation have grown far beyond direct measurements
 - a multiple of angularities, correlation functions, substructure observables from both ATLAS and CMS (not covered here !)
 - use of track-based and all-particle reconstructions and dig into jet-flavour depence. Ghost-association of track-jets or reconstructed hadrons, esp. for b-quark studies
 - refitting r_{b} on LHC data
 - testing models using tī pairs
- Ways to improve systematic uncertainties precision ? Most analyses only 36/fb so far !
- First ~analytic calculations of b -quark fragmentation in top-quark decays are on the horizon for comparison !
- Dawn of Run 3 a good time to revisit 7 TeV MC tunes & studies

Backup slides

b-fragmentation studies, Top LHC France, 9th May 2022

18