Status of 4-top experimental results in ATLAS and CMS

Mathis Kolb on behalf of the ATLAS and CMS Collaborations

Top LHC France workshop IP2I Lyon May 9, 2022

Introduction

- Full Run 2 offers 139 fb⁻¹ \rightarrow rare top production modes
- Associated top production massive final states
- Top quark couples to many SM and new physics particles
- ttV is important background for 4-tops

4-top quark signatures

4-top decay modes

- Rare process: $\sigma(pp \rightarrow tttt) = 12.0 \pm 2.4$ fb at NLO in QCD+QED JHEP 02 (2018) 031
- High jets and b-jets multiplicities
- Single lepton and two opposite sign leptons (1LOS)
 - Higher branching fraction
 - Larger irreducible background
 - ATLAS: 139 fb⁻¹, JHEP 11 (2021) 118
 - CMS: 36 fb⁻¹, JHEP 11 (2019) 082
- Same-sign di-lepton and multi-lepton (SSML)
 - Smaller branching fraction
 - Higher purity
 - ATLAS: 139 fb-1, Eur. Phys. J. C 80 (2020) 1085
 - CMS: 137 fb⁻¹, Eur. Phys. J. C 80 (2020) 75

SSML	137 fb-1	139 fb-1
1LOS	36 fb-1	139 fb-1
Combination		139 fb-1

4-top SSML analysis strategy

- Likelihood fit of signal and control regions
 → extract signal strength and background
- Boosted Decision Tree separates tttt from background
- CMS: 19 input variables
 - Including lepton/jet multiplicity and jet flavor
 - Baseline ≥ 2 jet, ≥ 2 b-jet, H_T > 300 GeV
- ATLAS 12 input variables
 - Including sum of b-tagging scores and minimum ΔR between any pair of leptons
 - Signal region \ge 6 jets, \ge 2 b-jets, H_T > 500 GeV

4-top SSML backgrounds

- Main backgrounds:
 - ttW/ttZ/ttH
 - Events with non-prompt or chargemisidentified lepton
- Data-driven method for charge misidentification estimation

- ATLAS
 - Template fit method to estimate the non-prompt backgrounds
 - Dedicated control regions for ttW, heavy flavour leptons and conversions
 - ttW background normalization is free parameter
- CMS
 - Dedicated control region for ttZ
 - Tight-to-loose ratio method for non-prompt estimation

4-top SSML ATLAS - ttW modeling

- ttW validation region
- $-n_j \ge 4, n_b \ge 2$
- Plot N₊ N₋
 - Charge asymmetry of leptons
 - $\sigma(ttW^{+}):\sigma(ttW^{-})\sim 2:1$
 - Removes charge symmetric processes
- Large uncertainty from 7j, ≥8j bins

PDF($uar{d}$)

 $\mathsf{PDF}(ar{u}d)$ source

Eur. Phys. J. C 80 (2020) 1085

4-top SSML uncertainties

ATLAS

CMS

Uncertainty source					Impact on
Signal modelling		$\Delta \mu$	Source	Uncertainty (%)	$\sigma(t\bar{t}t\bar{t}\bar{t})$ (%)
<i>tītī</i> cross section	+0.56	-0.31	Integrated luminosity	2.3–2.5	2
<i>tītī</i> modelling	+0.15	-0.09	Pileun	0_5	1
Background modelling					1
$t\bar{t}W$ +jets modelling	+0.26	-0.27	Irigger efficiency	2-7	2
<i>tīt</i> modelling	+0.10	-0.07	Lepton selection	2–10	2
Non-prompt leptons modelling	+0.05	-0.04	Jet energy scale	1–15	9
$t\bar{t}H$ +jets modelling	+0.04	-0.01	Jet energy resolution	1–10	6
ttZ+jets modelling Other heateround modelling	+0.02	-0.04	h tagging	1_15	6
Charge misassignment	+0.03 +0.01	-0.02 -0.02	Size of simulated sample	1 25	0
Instrumental	10.01	0.02	Size of simulated sample	1-25	<1
Jet uncertainties	+0.12	-0.08	Scale and PDF variations †	10–15	2
Jet flavour tagging (light-flavour jets)	+0.11	-0.06	ISR/FSR (signal) †	5-15	2
Simulation sample size	+0.06	-0.06	ttH (normalization) †	25	5
Luminosity	+0.05	-0.03	$Rare X \propto t \bar{t} V V (norm) +$	11_20	<1
Jet flavour tagging (<i>b</i> -jets)	+0.04	-0.02		11 20	
Jet flavour tagging (<i>c</i> -jets)	+0.03	-0.01	ttZ, ttVV (norm.) T	40	3-4
Other experimental uncertainties	+0.03	-0.01	Charge misidentification †	20	<1
Total systematic uncertainty	+0.70	-0.44	Nonprompt leptons †	30-60	3
Statistical	+0.42	-0.39	ISR /FSR		0
Non-prompt leptons normalisation (HF, Mat. Conv., Low m_{γ^*})	+0.05	-0.04	Niets	1–30	2
$t\bar{t}W$ normalisation	+0.04	-0.04	$\sigma(t\bar{t}b\bar{b})/\sigma(t\bar{t}ii)$ +	35	11
Total uncertainty	+0.83	-0.60		20	**

Eur. Phys. J. C 80 (2020) 1085

Eur. Phys. J. C 80 (2020) 75

- Similar contribution from statistical and systematic uncertainty
- ATLAS: ttW modelling is largest background uncertainty

4-top SSML results

- Agreement between post-fit prediction and data
- Less than 2 σ away from SM prediction (ATLAS)

		ATLAS EXPERIMENT
σ(tttt)	12.6 ^{+5.8} -5.2 fb	24+7 ₋₆ fb
Significance	2.6 (2.7) σ	4.3 (2.4) σ

4-top 1LOS ATLAS JHEP 11 (2021) 118

- Event categorization based on jet multiplicity and b-tagging requirements (3b L/H/V)
- Balance: 4top sensitivity tt+jets estimation
- Data-driven tt+jets corrections

Events / 200 GeV

6000

4000

2000

0.5

Data / Pred.

ATLAS

- Simultaneous profile likelihood fit
 - BDT discriminant used in signal region $H_{T^{all}}$ distribution

≥4b

3bV

Regions

≥10j,≥5b

2LOS

Signal regions

Validation regions

4-top 1LOS uncertainties JHEP 11 (2021) 118

- Dominated by tt + heavy flavour modelling uncertainties
- Limited by systematic uncertainties

5 00000 b		
ainty source	$\Delta \sigma_{t\bar{t}t\bar{t}}$	[fb]
Modelling		
delling	+8	-3
round Modelling		
b modelling	+8	_7

Uncertainty source	$\Delta \sigma_{t\bar{t}t}$	_ī [fb]
Signal Modelling		
$t\bar{t}t\bar{t}$ modelling	+8	-3
Background Modelling		
$t\bar{t} + \geq 1b$ modelling	+8	-7
$t\bar{t} + \geq 1c$ modelling	+5	-4
$t\bar{t}$ +jets reweighting	+4	-3
Other background modelling	+4	-3
$t\bar{t}$ +light modelling	+2	-2
Experimental		
Jet energy scale and resolution	+6	-4
<i>b</i> -tagging efficiency and mis-tag rates	+4	-3
MC statistical uncertainties	+2	-2
Luminosity	<	1
Other uncertainties	<	1
Total systematic uncertainty	+15	-12
Statistical uncertainty	+8	-8
Total uncertainty	+17	-15

4-top 1LOS results and combination

- 1LOS measured $\sigma(tttt) = 26^{+17}_{-15}$ fb and 1.9 (1.0) σ observed (expected) significance
- Different uncertainties dominate SSML and 1LOS
- Combination improves observed (expected) significance to 4.7 σ (2.6 $\sigma)$
- Combination 2 σ away from SM expectation 12.0 \pm 2.4 fb

 $\log_{10}(S/B)$

4-top 1LOS CMS JHEP 11 (2019) 082

- BDT to separate signal from background in each category
 - Jet and b-jet multiplicities, jet properties, kinematic variables
- Dedicated BDT for top quark identification (trijets from hadronic top quarks)
 - Dijet and trijet masses, b-tagging information, angles between jets

1LOS CMS background and uncertainties

JHEP 11 (2019) 082

Systematic uncertainty	Normalization	Shape
Integrated luminosity	Х	
Pileup modeling	Х	Х
Lepton reconstruction and identification	Х	
Jet energy corrections	Х	Х
b tagging	Х	Х
Ren. and fact. scales	Х	Х
PS scales	Х	
ME-PS matching	Х	
UE	Х	
Jet multiplicity correction	Х	
Parton distribution functions	Х	Х
Top quark $p_{\rm T}$ reweighting		Х
Heavy-flavor reweighting	Х	Х
Rare process	Х	

- tt+ jets is dominant background
- Reweighting of tt + jets events
- Equally affected by statistical and systematic uncertainties
- Main uncertainties: tt+heavy-flavor reweighting, jet multiplicity correction, PS and UE modeling in tt simulation

4-top 1LOS results JHEP 11 (2019) 082

- Observed (expected) significance 0.0σ (0.4σ)
- $\sigma(tttt) = 0^{+20} \text{ fb}$

4-top interpretations - CMS

Eur. Phys. J. C 80 (2020) 75

Top Yukawa coupling SSML

- Top Yukawa coupling $|y_t/y_t^{SM}| < 1.7$
- Higgs oblique parameter < 0.12 at 95% CL
- Limits on new particles
 - Type-II two-Higgs-doublet models
 - Simplified dark matter models

4-top EFT parameters – CMS 1LOS JHEP 11 (2019) 082

$$\mathcal{L}_{
m EFT} = \mathcal{L}_{
m SM}^{(4)} + rac{1}{\Lambda} \sum_{k} C_{k}^{(5)} \mathcal{O}_{k}^{(5)} + rac{1}{\Lambda^{2}} \sum_{k} C_{k}^{(6)} \mathcal{O}_{k}^{(6)} + \dots,$$

$$\begin{split} \mathcal{O}_{\mathrm{tt}}^{1} &= (\overline{\mathfrak{t}}_{\mathrm{R}} \gamma^{\mu} \mathfrak{t}_{\mathrm{R}}) \left(\overline{\mathfrak{t}}_{\mathrm{R}} \gamma_{\mu} \mathfrak{t}_{\mathrm{R}} \right), \\ \mathcal{O}_{\mathrm{QQ}}^{1} &= \left(\overline{\mathrm{Q}}_{\mathrm{L}} \gamma^{\mu} \mathrm{Q}_{\mathrm{L}} \right) \left(\overline{\mathrm{Q}}_{\mathrm{L}} \gamma_{\mu} \mathrm{Q}_{\mathrm{L}} \right), \\ \mathcal{O}_{\mathrm{Qt}}^{1} &= \left(\overline{\mathrm{Q}}_{\mathrm{L}} \gamma^{\mu} \mathrm{Q}_{\mathrm{L}} \right) \left(\overline{\mathfrak{t}}_{\mathrm{R}} \gamma_{\mu} \mathfrak{t}_{\mathrm{R}} \right), \\ \mathcal{O}_{\mathrm{Qt}}^{8} &= \left(\overline{\mathrm{Q}}_{\mathrm{L}} \gamma^{\mu} T^{\mathrm{A}} \mathrm{Q}_{\mathrm{L}} \right) \left(\overline{\mathfrak{t}}_{\mathrm{R}} \gamma_{\mu} T^{\mathrm{A}} \mathfrak{t}_{\mathrm{R}} \right), \end{split}$$

4-top EFT parameters 1LOS (36 fb-1)						
Operator	Expected C_k / Λ^2 (TeV ⁻²)	Observed (TeV $^{-2}$)				
\mathcal{O}_{tt}^1	[-2.0, 1.8]	[-2.1, 2.0]				
\mathcal{O}_{QQ}^{1}	[-2.0, 1.8]	[-2.2, 2.0]				
\mathcal{O}_{Qt}^1	[-3.3, 3.2]	[-3.5, 3.5]				
\mathcal{O}_{Qt}^8	[-7.3, 6.1]	[-7.9, 6.6]				

- Using 4 linear independent operators
- Constraints based on rates

Summary

4-top cross-section

- Many 4-top signatures are studied in CMS and ATLAS
- First evidence for SM 4-top in ATAS SSML analysis
- ATLAS SSML and 1LOS combination improves significance
- CMS analyses constrain various BSM models

Backup

Introduction

- Top quark is heaviest fundamental particle
- Decays before hadronization
- Almost uniquely decays to W boson and bottom quark
- Focus on tttt

4-top event display

CRZ

4top SSML

Control and signal region definitions

CMS

						N_ℓ	N _b	Njets	Region
								≤ 5	CRW
		ATLAS					2	6	SR1
			_				2	7	SR2
Region	Channel	N_j	N _b	Other requirements	Fitted variable			≥ 8	SR3
SR	21.55/31	> 6	> 2	$H_{\rm T} > 500$	BDT	2		5	SR4
510	2200/32	20		11 × 500	DD1		2	6	SR5
CR Conv.	$e^{\pm}e^{\pm} e^{\pm}\mu^{\pm}$	$4 \le N_j < 6$	≥ 1	$m_{ee}^{\rm CV} \in [0, 0.1 \text{ GeV}]$	$m_{ee}^{\rm PV}$		3	7	SR6
				$200 < H_{\rm T} < 500 { m GeV}$				≥ 8	SR7
CR HF e	еее ееµ	-	= 1	$100 < H_{\rm T} < 250 { m ~GeV}$	counting		≥ 4	≥ 5	SR8
CR HF //		_	= 1	$100 < H_{\rm T} < 250 {\rm GeV}$	counting			5	SR9
			-				2	6	SR10
CR ttW	$e^{\pm}\mu^{\pm} \mu^{\pm}\mu^{\pm} $	≥ 4	≥ 2	$m_{ee}^{CV} \notin [0, 0.1 \text{ GeV}], \eta(e) < 1.5$	$\Sigma p_{\mathrm{T}}^{\iota}$	~ 2		≥ 7	SR11
				for $N_b = 2$, $H_T < 500$ GeV or $N_j < 6$		≥ 3		4	SR12
				for $N_b \ge 3$, $H_T < 500$ GeV			≥ 3	5	SR13
	1	1	1	1				>6	SR14

Eur. Phys. J. C 80 (2020) 1085

Eur. Phys. J. C 80 (2020) 75

Inverted resonance veto

4-top 1LOS - regions

Name	$N_b^{60\%}$	$N_b^{70\%}$	$N_b^{85\%}$
2b	-	= 2	-
3bL	≤ 2	= 3	-
3bH	= 3	= 3	= 3
3bV	= 3	= 3	≥ 4
\geq 4b (2LOS)	-	≥ 4	-
4b (1L)	-	= 4	-
≥5b (1L)	-	≥ 5	-

JHEP 11 (2021) 118

ttW modeling

- ttW validation region
- $-Nj \ge 4$, $Nb \ge 2$
- Plot $N_{+} N_{-}$
 - Charge asymmetry of leptons
 - $\sigma(ttW^{-}):\sigma(ttW^{-})\sim 2:1$
 - Removes charge symmetric processes
- Large uncertainty from 7j, ≥8j bins

 $\mathsf{PDF}(uar{d})$

 $\mathsf{PDF}(ar{u}d)$

Eur. Phys. J. C 80 (2020) 1085

Data-driven ttW Eur. Phys. J. C 81 (2021) 1023

- Method to model ttW background used in SUSY RPV analysis
- Motivation: large uncertainties in MC jet multiplicity modeling
- SUSY RPV analysis:
 - ttV+ttbar background with parameterized model
 - Simultaneous likelihood fit in jet and b-jet multiplicity regions
 - 54-110 bins depending on jet p_T threshold
 - Same central value with completely different background estimation method, reduced reliance on MC and no MVA

RPV analysis - Eur. Phys. J. C 81 (2021) 1023

$$\mu_{\rm tttt} = 2.0^{+0.9}_{-0.7}$$

SM 4-top analysis - Eur. Phys. J. C 80 (2020) 1085

$$\mu_{\rm tttt} = 2.0^{+0.8}_{-0.6}$$

Events

Data/Model

Data-driven ttW Eur. Phys. J. C 81 (2021) 1023

- Method to model ttW background used in SUSY RPV analysis
- Motivation: large uncertainties in MC jet multiplicity modeling
- Data-driven background model
 - N_{b-jet} distribution: obtained with $N_{j,b} = f_{j,b} \ge N_j$
 - N_{jet} distribution: parameterized using scaling

Jet scaling Eur. Phys. J. C 81 (2021) 1023

$$N_j = N_4 \cdot \prod_{j'=4}^{j'=j-1} r(j')$$

- N_{jet} distribution: parameterized using scaling - $r(j) = N_{j+1} / N_j$
 - $r(j) = c_0$ for very high jet multiplicities (staircase)
 - $-r(j) = c_1/(j+1)$ for low jet multiplicities (Poisson)
- Ratio $r(j) \equiv N_{j+1} / N_j = c_0 + c_1 / (c_2 + j)$
 - c2, introduced to account for the ambiguity counting extra jets in tt events
 - Fit one normalization (N₄) and two/three parameters (c0, c1, c2) per background

