

high-energy probes of the *b*-anomalies in the top sector

<u>Chris Pollard</u> University of Oxford

introduction

here we're focusing on implications of the $b \rightarrow \ell + X$ anomalies.

Chris Pollard Oxford

but don't forget there are other hints of LFU-violating new physics!

reminder

 $R(K) = \frac{BR(B \to K\mu\mu)}{BR(B \to Kee)}$ arXiv 2103.16558

Observable	Experiment	\mathbf{SM}
$R_{K^{st}}^{[0.045,1.1]}$	$0.66^{+0.11}_{-0.07}\pm 0.03$ [3]	0.906 ± 0.028 [64]
$R_{K^{st}}^{[1.1,6.0]}$	$0.69^{+0.11}_{-0.07}\pm 0.05$ [3]	1.00 ± 0.01 [64]
$R_{K}^{[1.1,6.0]}$	$0.846^{+0.042+0.013}_{-0.039-0.012}$ [1]	1.00 ± 0.01 [64]
$\mathcal{B}(B_s \to \mu^+ \mu^-)$	$(2.85^{+0.32}_{-0.31}) \times 10^{-9}$ [65–67]	$(3.66 \pm 0.14) \times 10^{-9}$ [68]

arXiv 2103.11769

Chris Pollard Oxford

$$R(D) = \frac{BR(B \to D\tau\nu)}{BR(B \to D\ell\nu)}$$

Observable	Experiment	\mathbf{SM}
$\{R_D,R_{D^*}\}$	$ \begin{cases} 0.337(30), 0.298(14) \\ \rho = -0.42 \end{cases} [86] $	$\{0.299(3), 0.258(5)\}$ [87]
$\mathcal{B}(B^- o au ar{ u})$	$1.09(24) \times 10^{-4}$ [88]	$0.812(54) \times 10^{-4}$ [89]

arXiv 2103.11769

EFT deviations

Chris Pollard Oxford

arXiv 2103.16558

solutions?

Chris Pollard Oxford

flavor structure of couplings l

- depending on choice of model structure + parameters and experimental results used...
- ... there is a range of flavor-dependent couplings preferred by the data.
- for e.g. a generic vector leptoquark, the new interaction involves a current of the form

$$J^U_{\mu} = \beta^{i\alpha}_L \, (\bar{q}^{\,i}_L \gamma$$

where the $\beta_{L/R}^{i\alpha}$ are coupling matrices between generations of quarks and leptons.

• for example in arxiv:2103.16558 it's found, based on the previously-shown EFT fits, that

- others ~ 0

- $\gamma_{\mu}\ell_{L}^{lpha})+\beta_{R}^{ilpha}\left(ar{d}_{R}^{i}\gamma_{\mu}e_{R}^{lpha}
 ight)$

flavor structure of couplings II

- alternatively, many aspects of the b-anomalies can be explained by "simple" Z^{\prime} .
- see for example arxiv:1809.01158
 - agreement with experimental data improves considerably w.r.t. the SM,
 - via introducing a new heavy Z^\prime with flavor-dependent couplings.
 - introduces small non-flavor universal couplings to the SM Z, but more importantly...

Mode	BR	Mode	BR	Mode	\mathbf{BR}
$t ar{t}$	0.42	$b\overline{b}$	0.12	$ u \bar{ u}'$	0.08
$\mu^+\mu^-$	0.08	$\tau^+ \tau^-$	0.30	other $f_i f_j$	$\sim \mathcal{O}(10^{-4})$

Chris Pollard Oxford

some experimental results

- will focus here on *recent* experimental results involving tops
 - that are generically sensitive to the flavor anomalies,
 - but it's not at all exhaustive!
- I'll also throw out some ideas of where we could improve our experimental program,
 - but given the number of models that have been proposed,
 - really there is a *lot* of ground to cover!
- split loosely into precision measurements, direct LQ searches, and tests via associated production.

understanding W decays in tt events

- LEP saw ~ 2.5σ deviations from the SM in W decays:
 - $R_{\tau/\ell}^{LEP} = 1.066 \pm 0.025$
 - $R_{\tau/\ell}^{SM} = 0.9996$
- CMS data are much closer to universality and SM.

understanding W decays in tt events

- ATLAS has measured
 - $R_{e/\mu} = 0.997 \pm 0.010$
 - $R_{\tau/\mu} = 0.992 \pm 0.013$
- These measurements are also very much in line with universality and the SM.

understanding W decays in *tt* events

Chris Pollard Oxford

it appears the LHC experiments have ruled out LFUV in W decays for the time being...

see backup for CMS Drell-Yan measurements vs $m_{\ell\ell}$

u, c

which would result in $t\ell\ell'$ production and BSM top decays.

in a similar vein, CMS have also searched for anomalous 4-fermion interactions involving charged leptons and the top quark,

Obs

0.35

Exp \pm **1** σ

0.4

Chris Pollard Oxford

no substantial deviations from the SM :-(

new search for LQ pair production from ATLAS

focusing on single-light-lepton final state with cross-generational couplings

lepton comes from either LQ or top decay

Chris Pollard Oxford

 $L(\mathcal{D} \ L(\mathcal{D} \ \rightarrow \ bl \ + \ t\nu)$

rules out a large number of possible LQ scenarios coupling to light leptons and 3rd-generation quarks

Chris Pollard Oxford

 $LQ LQ \rightarrow bl + tv$

this analysis targets final states with strong third-generation couplings,

searching rather inclusively in $\tau \tau b + E_T^{miss}$

Chris Pollard Oxford

 $L(\mathcal{D}, L(\mathcal{D}) \to b\tau + t\nu)$

rules out a large number of possible LQ scenarios coupling to 3rd-generation leptons and quarks

S

0

Chris Pollard Oxford

 $LQ LQ \rightarrow b\tau + t\nu$

additional vector bosons with flavor-dependent coupling can alter apparent ttZ cross sections and $t \rightarrow Zq$ branching fractions

probing the $t \leftrightarrow Z$ coupling

CMS have recently taken a very careful look at both processes coherently.

Chris Pollard Oxford

probing the $t \leftrightarrow Z$ coupling

probing the $t \leftrightarrow Z$ coupling

Mode	BR	Mode	BR	Mode	\mathbf{BR}
$t ar{t}$	0.42	$b\bar{b}$	0.12	$ u \overline{\nu}' $	0.08
$\mu^+\mu^-$	0.08	$\tau^+ \tau^-$	0.30	other $f_i f_j$	$\sim \mathcal{O}(10^{-4})$

multi-top final states

recall the very strong coupling to top-quarks predicted by fits to the *b*-anomalies + other precision experimental data

Mode	BR	Mode	BR	Mode	\mathbf{BR}
$tar{t}$	0.42	$b\bar{b}$	0.12	$ u \overline{\nu}' $	0.08
$\mu^+\mu^-$	0.08	$ \tau^+ \tau^-$	0.30	other $f_i f_j$	$\sim \mathcal{O}(10^{-4})$

multi-top final states

recall the very strong coupling to top-quarks predicted by fits to the *b*-anomalies + other precision experimental data

new top-philic vector bosons are in vogue! remember that $gg \rightarrow Z' \rightarrow t\bar{t}$ is OZI suppressed.

ATLAS+CMS Preliminary		Run 2, √s = 13 TeV, M	arch 2022
$\sigma_{t\bar{t}t\bar{t}} = 12.0_{-2.5}^{+2.2}$ (scale) fb JHEP 02 (2018) 031 NLO QCD+EW		tot. stat.	
		$\sigma_{t\bar{t}t\bar{t}} \pm tot. (stat.\pm syst.)$ O	bs. (Exp.) Sig.
ATLAS, 2LSS/3L, 139 fb ⁻¹ EPJC 80 (2020) 1085	₩■₩	24 ^{+ 7} _{- 6} (5 ^{+ 5} _{- 4}) fb	4.3 (2.4)σ
ATLAS, 1L/2LOS, 139 fb ⁻¹ JHEP 11 (2021) 118		26 ⁺¹⁷ _{−15} (8 ⁺¹⁵ _{−13}) fb	1.9 (1.0)σ
ATLAS, comb., 139 fb ⁻¹ JHEP 11 (2021) 118	┠┼─₹─┼─┨	24 ⁺⁷ ₋₆ (4 ⁺⁵ ₋₄) fb	4.7 (2.6) σ
CMS, 2LSS/3L, 137 fb ⁻¹ EPJC 80 (2020) 75		12.6 ^{+5.8} _{-5.2} fb	2.6 (2.7)σ
CMS, 1L/2LOS, 35.8 fb ⁻¹ JHEP 11 (2019) 082		0 ⁺²⁰ fb	0.0 (0.4)σ
	20	40 60	80 10
\sim	20	σ _{tītī} [fb]	

multi-top final states

"top fusion" or "associated production" is critical to access some kinds of new physics.

four-top analyses will be covered in detail by Mathis

24

Chris Pollard Oxford

multi-top final states

this very well may be the best way for us to see new (flavor) physics in the top sector.

> *ttbb* and *bb\tau\tau* also highly motivated!

are they covered?

summary

- many stones still left un-turned: a lot to do yet in Run 2 and 3 on this topic!
 - huge number of models with rich phenomenology to cover.
 - will be fascinating to see how high-mass, nonresonant analyses alter the picture.
- this summary is *far from exhaustive* in covering experimental probes of the *b*-anomalies...
- the top quark certainly has a part to play in unraveling observations in B-physics.
 - via W decays, b decays, or direct couplings.

Chris Pollard Oxford

bonus

useful (theory) references

- flavor anomalies workshop: <u>https://indico.cern.ch/event/1055780/timetable/</u>
- B Allanach: <u>https://conference.ippp.dur.ac.uk/event/1030/contributions/5287/</u> <u>attachments/4329/5252/manifesto.pdf</u>
- A Crivellin: <u>https://conference.ippp.dur.ac.uk/event/1030/contributions/5288/</u>
- reading footprints in the anomalies: <u>https://arxiv.org/pdf/2103.16558.pdf</u>
- LQ solutions to $B_s \to \ell \ell \ell$: https://arxiv.org/pdf/2103.12504.pdf
- EFT for $B_s \to \ell \ell \ell$: https://arxiv.org/pdf/2110.09882.pdf

Chris Pollard Oxford

138 fb⁻¹ (13 TeV)

1200

m (GeV)

1400

2.4 σ discrepancy with lepton universality in ΔA_{FB}

HMDY 2021 09 22