Positrons in AMS-02. Positrons excess what can we say?

Jonathan Pochon

AMS-group from Instituto Astrofisica de Canarias (IAC)

AMS-02 workshop: march 9th 2010

- From 70's, experiments show a possible excess on positron fraction above 10 GeV.
- At these energies, most of positrons are believed "secondaries", interactions between cosmic rays and gas: pp, pHe, HeHe... → e⁺e⁻.
- We hoped that would be a sign from Dark Matter: SUSY, Kaluza-Klein,.....
- Apparent absence of \(\bar{p}\) convinced community to look for standard contributions: Pulsars, Supernovae

- From 70's, experiments show a possible excess on positron fraction above 10 GeV.
- At these energies, most of positrons are believed "secondaries", interactions between cosmic rays and gas: pp, pHe, HeHe... → e⁺e⁻.
- We hoped that would be a sign from Dark Matter: SUSY, Kaluza-Klein,....
- Apparent absence of p
 convinced
 community to look for standard
 contributions: Pulsars
 Supernovae

- From 70's, experiments show a possible excess on positron fraction above 10 GeV.
- ► At these energies, most of positrons are believed "secondaries", interactions between cosmic rays and gas: pp, pHe, HeHe... → e⁺e⁻.
- We hoped that would be a sign from Dark Matter: SUSY, Kaluza-Klein,.....
- Apparent absence of \(\bar{p}\) convinced community to look for standard contributions: Pulsars Supernovae

- From 70's, experiments show a possible excess on positron fraction above 10 GeV.
- At these energies, most of positrons are believed "secondaries", interactions between cosmic rays and gas: pp, pHe, HeHe... → e⁺e⁻.
- ► We hoped that would be a sign from Dark Matter: SUSY, Kaluza-Klein,.....
- Apparent absence of p̄ convinced community to look for standard contributions: Pulsars, Supernovae,.....

Pulsars: e^{\pm} production

- Pulsar magnetic field takes away electrons from surface, and then interact with medium: magnetic field, thermal X-rays,....
- Almost two locations are possible acceleration zone: Polar Cap (PC) and Outer Gap (OG). Gamma-ray pulsar condition: "g<1".</p>
- Differences: OG gives a harder e[±] flux, and PC has a higher contribution at low energy. But, more or less e[±] output energy is the same.

Pulsars: e^{\pm} production

- Pulsar magnetic field takes away electrons from surface, and then interact with medium: magnetic field, thermal X-rays,....
- Almost two locations are possible acceleration zone: Polar Cap (PC) and Outer Gap (OG). Gamma-ray pulsar condition: "g<1".</p>
- Differences: OG gives a harder e[±] flux, and PC has a higher contribution at low energy. But, more or less e[±] output energy is the same.

3 / 13

Pulsars: e^{\pm} production

- Pulsar magnetic field takes away electrons from surface, and then interact with medium: magnetic field, thermal X-rays,....
- ► Almost two locations are possible acceleration zone: Polar Cap (PC) and Outer Gap (OG). Gamma-ray pulsar condition: "g<1".</p>
- Differences: OG gives a harder e[±] flux, and PC has a higher contribution at low energy. But, more or less e[±] output energy is the same.

Pulsars properties

$$E_{max}^{e^{\pm}} \propto 1/T$$

$$E_{max}^{e^{\pm}}(Vela) \sim 30 \text{ TeV},$$

$$E_{max}^{e^{\pm}}(Geminga) \sim 950 \text{ GeV}.$$

- Pulsars age T can be determined from pulsations, which gives maximum energy reached by e[±]......
-and a simple way to obtain $E_{out}^{e^{\pm}}$.
- ▶ The higher E_{max} we get, the lower $E_{out}^{e^{\pm}}$

Pulsars properties

$$E_{max}^{e^{\pm}} \propto 1/T$$

$$E_{max}^{e^{\pm}}(Vela) \sim 30 \text{ TeV},$$

$$E_{max}^{e^{\pm}}(Geminga) \sim 950 \text{ GeV}.$$

$$\begin{split} E_{out}^{e^\pm} &\propto f_{e_\pm} \dot{E} T^2 \\ f_{e_\pm} &: \text{pair prod. efficiency,} \\ \dot{E} &: \text{spin-down luminosity } [erg.s^{-1}]. \end{split}$$

- ▶ Pulsars age *T* can be determined from pulsations, which gives maximum energy reached by e[±]......
-and a simple way to obtain $E_{out}^{e^{\pm}}$.
- ▶ The higher E_{max} we get, the lower $E_{out}^{e^{\pm}}$ we have

Pulsars properties

- Pulsars age T can be determined from pulsations, which gives maximum energy reached by e[±]......
-and a simple way to obtain $E_{out}^{e^{\pm}}$.
- ► The higher E_{max} we get, the lower $E_{out}^{e^{\pm}}$ we have.

Electron propagation

- After e[±] production, e[±] loose energy by synchrotron and inverse Compton and diffuse in the galactic magnetic field.
- Transport equation in standard diffusion approximation (neglecting convection).
- ▶ Diffusion parameter $K(E) = K_0 E^{-\delta}$ [$cm^2.s^{-1}$] manages electrons intensity and flux shape.
- ► Energy loss *b*(*E*) determines energy maximum after a given time.

Electron propagation

$$\frac{\partial}{\partial t}\frac{dn_e}{dE_e} = \frac{K(E_e)}{r^2}\frac{\partial}{\partial r}\left[r^2\frac{\partial}{\partial r}\frac{dn_e}{dE_e}\right] + \frac{\partial}{\partial E_e}\left[b(E_e)\frac{dn_e}{dE_e}\right] + Q(E_e)$$

- After e[±] production, e[±] loose energy by synchrotron and inverse Compton and diffuse in the galactic magnetic field.
- ► Transport equation in standard diffusion approximation (neglecting convection).
- ▶ Diffusion parameter $K(E) = K_0 E^{-\delta}$ [$cm^2.s^{-1}$] manages electrons intensity and flux shape.
- ▶ Energy loss b(E) determines energy maximum after a given time.

Electron propagation

- After e[±] production, e[±] loose energy by synchrotron and inverse Compton and diffuse in the galactic magnetic field.
- Transport equation in standard diffusion approximation (neglecting convection).
- ▶ Diffusion parameter $K(E) = K_0 E^{-\delta}$ [$cm^2.s^{-1}$] manages electrons intensity and flux shape.
- ► Energy loss *b*(*E*) determines energy maximum after a given time.

 $(1.5 < \alpha < 2.2)$ gives a solution to propagation equation.

▶ Pulsar injection flux $Q(E) \propto E^{-\alpha}$

- rdiff is propagation length for a given energy which depending on pulsar age T
- Propagation effects
 Intensity and shape depends on propagation parameters.
- ► Age and distance conditions
 In order to have some signal above 10
 GeV, we need pulsars younger than
 60.10⁵ years. Below 1 kpc, pulsars could be considered individually.

$$\frac{dn_e}{dE_e} = \frac{Q(E_e)}{\pi^{3/2} r^3} (1 - E_e/E_{max})^{\alpha-2} \left(\frac{r}{r_{diff}}\right)^3 e^{(r/r_{diff})^2}$$

T: pulsar age, r: distance and $E_e < {E_{max}} \approx 1/(bT)$

$$r_{diff} \approx 2 \sqrt{K(E_e) T \frac{1 - (1 - E_e/E_{max})^{1 - \delta}}{(1 - \delta) E_e/E_{max}}}$$

Propagation scenario Delahaye (2007)

- Pulsar injection flux $Q(E) \propto E^{-\alpha}$ (1.5< α <2.2) gives a solution to propagation equation.
- ► rdiff is propagation length for a given energy which depending on pulsar age T.
- Propagation effects
 Intensity and shape depends or propagation parameters.
- Age and distance conditions In order to have some signal above 10 GeV, we need pulsars younger than 60.10⁵ years. Below 1 kpc, pulsars could be considered individually.

Propagation scenario Delahaye (2007)

- ▶ Pulsar injection flux $Q(E) \propto E^{-\alpha}$ (1.5< α <2.2) gives a solution to propagation equation.
- rdiff is propagation length for a given energy which depending on pulsar age T.
- Propagation effects
 Intensity and shape depends on propagation parameters.
- ► Age and distance conditions In order to have some signal above 10 GeV, we need pulsars younger than 60.10⁵ years. Below 1 kpc, pulsars could be considered individually.

Propagation scenario Delahaye (2007)

- ▶ Pulsar injection flux $Q(E) \propto E^{-\alpha}$ (1.5< α <2.2) gives a solution to propagation equation.
- ▶ rdiff is propagation length for a given energy which depending on pulsar age T.
- Propagation effects
 Intensity and shape depends on propagation parameters.
- ► Age and distance conditions In order to have some signal above 10 GeV, we need pulsars younger than 60.10⁵ years. Below 1 kpc, pulsars could be considered individually.

- ▶ Positron fraction in AMS-02 during 3 years with $Acc_{e^+} \sim 0.45cm^2 \cdot sr$, and background from Edsjo (1997). Above 500 GeV is under studies.
- For both propagation scenario minimizing electrons flux (MIN) and median one (MED), pulsars contribution is rising above 10 GeV without cutoff.
- ► The one maximizing (MAX) lets open possibility to distinguish structure.
- From Fermi 1 year catalogue, a new pulsars set can be studied (arXiv:1001 4540)

- ▶ Positron fraction in AMS-02 during 3 years with $Acc_{e^+} \sim 0.45cm^2 \cdot sr$, and background from Edsjo (1997). Above 500 GeV is under studies.
- For both propagation scenario minimizing electrons flux (MIN) and median one (MED), pulsars contribution is rising above 10 GeV without cutoff.
- ► The one maximizing (MAX) lets open possibility to distinguish structure.
- From Fermi 1 year catalogue, a new pulsars set can be studied (arXiv:1001.4540).

- ▶ Positron fraction in AMS-02 during 3 years with $Acc_{e^+} \sim 0.45cm^2 \cdot sr$, and background from Edsjo (1997). Above 500 GeV is under studies.
- For both propagation scenario minimizing electrons flux (MIN) and median one (MED), pulsars contribution is rising above 10 GeV without cutoff.
- The one maximizing (MAX) lets open possibility to distinguish structure.
- From Fermi 1 year catalogue, a new pulsars set can be studied (arXiv:1001.4540).

- ▶ Positron fraction in AMS-02 during 3 years with $Acc_{e^+} \sim 0.45cm^2 \cdot sr$, and background from Edsjo (1997). Above 500 GeV is under studies.
- For both propagation scenario minimizing electrons flux (MIN) and median one (MED), pulsars contribution is rising above 10 GeV without cutoff.
- The one maximizing (MAX) lets open possibility to distinguish structure.
- From Fermi 1 year catalogue, a new pulsars set can be studied (arXiv:1001.4540).

Can we constraint pulsars?

- Gammas are used to understand pulsars: Are they sufficient? What are uncertainties?
- Until now only pulsars was considered but most of the time, pulsars make part of objects complex: Supernova Remnant Pulsar wind nebula,.... "Pulsars" spectra are more complicated.
- Can we use pulsars to probe local propagation?

Can we constraint pulsars?

- Gammas are used to understand pulsars: Are they sufficient? What are uncertainties?
- Until now only pulsars was considered but most of the time, pulsars make part of objects complex: Supernova Remnant, Pulsar wind nebula,.... "Pulsars" spectra are more complicated.
- Can we use pulsars to probe local propagation?

Can we constraint pulsars?

- Gammas are used to understand pulsars: Are they sufficient? What are uncertainties?
- Until now only pulsars was considered but most of the time, pulsars make part of objects complex: Supernova Remnant, Pulsar wind nebula,.... "Pulsars" spectra are more complicated.
 - Can we use pulsars to probe local propagation?

Anisotropy: best way to distinguish pulsars?

$$\begin{split} Anis &= \frac{I_{max} - I_{min}}{I_{max} + I_{min}} = \frac{3K(E_e)|\nabla (dn_e/dE_e)|}{c(dn_e/dE_e)} \\ &\quad Anis^{max} = \frac{3}{2c}\frac{r}{T} \end{split}$$

Name	Dist. (pc)	Age (years)	Anis ^{max} (%)
Geminga [J0633+1746]	160.	$3.42 \ 10^{5}$	0.23
Monogem [B0656+14]	290.	$1.11 \ 10^5$	1.28
Vela [B0833-45]	290.	$1.13 \ 10^4$	12.5
B0355+54	1100.	$5.64 \ 10^5$	0.95

- Anisotropy of the e^{\pm} and e^{+} flux with diffusive propagation where $\nabla(dn_e/dE_e)$ is the gradient of e^{\pm} density
- ► Mao & Shen estimated maximum expected anisotropy Anis^{max} (energy-independent diffusion) which gives indications near E_{max}
- ► For energy-dependent diffusion, propagation parameters
- ► Leptons background model modify anisotropy predictions.

Anisotropy: best way to distinguish pulsars?

$$\begin{split} Anis &= \frac{I_{max} - I_{min}}{I_{max} + I_{min}} = \frac{3K(E_e)|\nabla (dn_e/dE_e)|}{c(dn_e/dE_e)} \\ &\quad Anis^{max} = \frac{3}{2c}\frac{r}{T} \end{split}$$

Name	Dist. (pc)	Age (years)	$Anis^{max}$ (%)
Geminga [J0633+1746]	160.	$3.42 \ 10^5$	0.23
Monogem [B0656+14]	290.	$1.11 \ 10^5$	1.28
Vela [B0833-45]	290.	$1.13 \ 10^4$	12.5
B0355+54	1100.	$5.64 \ 10^5$	0.95

$$Anis = Anis^{max} \frac{(1 - \delta)E_e / \frac{E_{max}}{E_{max}}}{1 - (1 - E_e / \frac{E_{max}}{E_{max}})^{1 - \delta}} \frac{N_e^{Puls}}{N_e^{tot}}$$

- Anisotropy of the e^{\pm} and e^{+} flux with diffusive propagation where $\nabla (dn_e/dE_e)$ is the gradient of e^{\pm} density
- Mao & Shen estimated maximum expected anisotropy Anis^{max} (energy-independent diffusion) which gives indications near E_{max}
- ► For energy-dependent diffusion, propagation parameters
- Leptons background model modify anisotropy predictions.

Anisotropy

Anisotropy

- Anisotropy from pulsars or local objects can be computed, but what is the background fluctuation or natural anisotropy?
- In AMS, discussions started to make electrons exposition map, including geomagnetic cutoff.
- What do we include? Sun position from source, to take in account heliomagnetic field?
- ► What precision do we need? Have we to include moon position?

- Anisotropy from pulsars or local objects can be computed, but what is the background fluctuation or natural anisotropy?
- In AMS, discussions started to make electrons exposition map, including geomagnetic cutoff.
- What do we include? Sun position from source, to take in account heliomagnetic field?
- ► What precision do we need? Have we to include moon position?

- Anisotropy from pulsars or local objects can be computed, but what is the background fluctuation or natural anisotropy?
- In AMS, discussions started to make electrons exposition map, including geomagnetic cutoff.
- What do we include? Sun position from source, to take in account heliomagnetic field?
- ► What precision do we need? Have we to include moon position?

- Anisotropy from pulsars or local objects can be computed, but what is the background fluctuation or natural anisotropy?
- In AMS, discussions started to make electrons exposition map, including geomagnetic cutoff.
- What do we include? Sun position from source, to take in account heliomagnetic field?
- ► What precision do we need? Have we to include moon position?

context Pulsars e[±] Pulsars prop. Propagation Puls. Sol. Pos. Frac. Contraints Anisot. Limit. Anisot. Conclusion Bonus

Conclusions: a (new) long journey has started......

- ► Uncertainties remain with pulsars: Local propagation and far away? Pair production efficiency? Which pulsars set?.......
- With or without antiprotons rise-up, pulsars must be studied to understand background. What about pulsars at lower energy?
- Strategies for the analysis of the positron fraction and anisotropy must be discussed
- ▶ Positrons is clearly not enough, antiprotons, B/C, and γ -rays will complete our understanding. What else?

Conclusions: a (new) long journey has started......

- Uncertainties remain with pulsars: Local propagation and far away? Pair production efficiency? Which pulsars set?.......
- With or without antiprotons rise-up, pulsars must be studied to understand background. What about pulsars at lower energy?
- Strategies for the analysis of the positron fraction and anisotropy must be discussed.
- ▶ Positrons is clearly not enough, antiprotons, B/C, and γ -rays will complete our understanding. What else?

context Pulsars e[±] Pulsars prop. Propagation Puls. Sol. Pos. Frac. Contraints Anisot. Limit. Anisot. Conclusion Bonus

