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Positrons in AMS-02.
Positrons excess what can we say?
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Positrons excess: why we started (again) with pulsars?
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◮ From 70’s, experiments show a possible
excess on positron fraction above 10
GeV.

◮ At these energies, most of positrons are
believed ”secondaries”, interactions
between cosmic rays and gas:
pp,pHe, HeHe... → e+e−.

◮ We hoped that would be a sign from
Dark Matter: SUSY, Kaluza-Klein,.....

◮ Apparent absence of p̄ convinced
community to look for standard
contributions: Pulsars, Supernovae,......
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Pulsars: e
± production

◮ Pulsar magnetic field takes away
electrons from surface, and then interact
with medium: magnetic field, thermal
X-rays,....

◮ Almost two locations are possible
acceleration zone: Polar Cap (PC) and
Outer Gap (OG). Gamma-ray pulsar
condition: ”g<1”.

◮ Differences: OG gives a harder e± flux,
and PC has a higher contribution at low
energy. But, more or less e± output

energy is the same.
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Pulsars properties

◮ Pulsars age T can be determined from
pulsations, which gives maximum energy
reached by e±.......

◮ .....and a simple way to obtain E e±

out .

◮ The higher Emax we get, the lower E e±

out

we have.
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Pulsars properties
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Electron propagation

◮ After e± production, e± loose energy by
synchrotron and inverse Compton and
diffuse in the galactic magnetic field.

◮ Transport equation in standard diffusion
approximation (neglecting convection).

◮ Diffusion parameter K(E) = K0E
−δ

[cm2.s−1] manages electrons intensity
and flux shape.

◮ Energy loss b(E) determines energy
maximum after a given time.
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Pulsars solution

◮ Pulsar injection flux Q(E) ∝ E−α

(1.5< α <2.2) gives a solution to
propagation equation.

◮ rdiff is propagation length for a given
energy which depending on pulsar age T .

◮ Propagation effects

Intensity and shape depends on
propagation parameters.

◮ Age and distance conditions

In order to have some signal above 10
GeV, we need pulsars younger than
60.105 years. Below 1 kpc, pulsars could
be considered individually.
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Pulsars age
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Propagation scenario Delahaye (2007)

◮ Positron fraction in AMS-02 during 3
years with Acce+ ∼ 0.45cm2

· sr , and
background from Edsjo (1997). Above
500 GeV is under studies.

◮ For both propagation scenario
minimizing electrons flux (MIN) and
median one (MED), pulsars contribution
is rising above 10 GeV without cutoff.

◮ The one maximizing (MAX) lets open
possibility to distinguish structure.

◮ From Fermi 1 year catalogue, a new
pulsars set can be studied
(arXiv:1001.4540).
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Can we constraint pulsars?
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◮ Gammas are used to understand pulsars:
Are they sufficient? What are
uncertainties?

◮ Until now only pulsars was considered
but most of the time, pulsars make part
of objects complex: Supernova Remnant,
Pulsar wind nebula,.... ”Pulsars” spectra
are more complicated.

◮ Can we use pulsars to probe local
propagation?
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Anisotropy: best way to distinguish pulsars?

◮ Anisotropy of the e± and e+ flux with
diffusive propagation where ∇(dne/dEe)
is the gradient of e± density

◮ Mao & Shen estimated maximum
expected anisotropy Anismax

(energy-independent diffusion) which
gives indications near Emax

◮ For energy-dependent diffusion,
propagation parameters

◮ Leptons background model modify
anisotropy predictions.
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Anisotropy
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Limitations on Anisotropy
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◮ Anisotropy from pulsars or local objects
can be computed, but what is the
background fluctuation or natural
anisotropy?

◮ In AMS, discussions started to make
electrons exposition map, including
geomagnetic cutoff.

◮ What do we include? Sun position from
source, to take in account heliomagnetic
field?

◮ What precision do we need? Have we to
include moon position?
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◮ Anisotropy from pulsars or local objects
can be computed, but what is the
background fluctuation or natural
anisotropy?

◮ In AMS, discussions started to make
electrons exposition map, including
geomagnetic cutoff.

◮ What do we include? Sun position from
source, to take in account heliomagnetic
field?

◮ What precision do we need? Have we to
include moon position?
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Limitations on Anisotropy
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Conclusions: a (new) long journey has started.......

◮ Uncertainties remain with pulsars: Local propagation and far away? Pair
production efficiency? Which pulsars set?........

◮ With or without antiprotons rise-up, pulsars must be studied to understand
background. What about pulsars at lower energy?

◮ Strategies for the analysis of the positron fraction and anisotropy must be
discussed.

◮ Positrons is clearly not enough, antiprotons, B/C, and γ-rays will complete
our understanding. What else?
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Bonus-track
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