Galactic Cosmic Rays: from sources to Earth

A. Marcowith (L.P.T.A.)

Introduction

Sources: Surpermova remunants

Transport in the interstellar medium

Perspectives for AMS=02

Conclusions

Introduction

• Galactic cosmic rays: observables

Les observables du rayonnement cosmique

spectre de masse

[Israel 2004]

99% de nucléons + 1% eabondance quasi-solaire

= source ⊗propagation

spectre en énergie

[Nagano & Watson 2000]

loi de puissance avec cassures

> 10 ordres de grandeur en énergie!

spectre angulaire

[lyono et al 2005]

rayonnement isotrope (marche au hasard dans le champ B galactique)

[Pierre Auger Coll. 2007]
sauf à ultra hautes énergies

Scientific goals of AMS-02

S/P (up to 1TeV)

Positrons (up to 300 GeV)

Electrons (up to 1TeV)

Anti H, D (up to 300 GeV)

Radioactive isotopes

$$E_{\text{max-H}} = a \text{ few TeV/n}$$

Any estimate/upper limits on electron/positron flux anisotropy is important (Pohlog)

• Aim of the talk: discuss links between AMS=02 and microphysics in astrophysical sources and transport in the ISM ... not restricted to phenomenology.

Sources of GCR

- Surpermova reminants (SNR):
 - Positive arguments
 - Recent observations
 - Recent developments in the theory of particle acceleration
- Other sources: Pulsars (see Timur's talk), micro-Quasars

Arguments: Standard GCR model

- <u>Energetic</u>: Around 20% of the explosion of a SN to be injected into energetic particles to explain the local CR energy density (1.5 eV/cm³).
- <u>Composition</u>: Acceleration of standard interstellar matter + spallation along the CR path in the Galaxy.
- Spectrum: Source spectrum close a power-law with an energy index of 2-2.1

All fit rather well in the supernova remnant diffusive shock acceleration model (Drury+o1)

Particle acceleration in (young) SNR: observations

- Multiwavelength spectrum + gamma=ray emission
- X=ray Filannents

High energy particles in SNR

Breakthrough by Tcherenkov telescopes: HESS, MAGIC, VERITAS

Aharonian+06

- Source spectrum: power-law (Γ = 2.1) +curt-off E_ ~10 TeV (at least softening)
- <u>5 other SNRs</u>:

Cassioppeia A, IC 443

(Fermi+Veritas, Magic)

RCW86, SN1006, W51 (Fermi+HESS)

X-ray filaments

Non-thermal spectrum = synchroton radiation of multi-TeV electrons in strong magnetic fields

MF \sim 100-500 μGauss about 100 x ISM MF

Particle acceleration in SNR: theory

• Diffusive shock acceleration = $\overline{acceleration}$ of particles through successive cycles of shock crossing (Bell78)

Waveparticle resonant interaction (see next)

* Wave = EM fluctuations

In shocks:
Wave can be selfgenerated by the particle population.

10

Particle acceleration in SNR: theory

- Diffusive shock acceleration = acceleration of particles through successive cycles of shock crossing (Bell78)
 - Fermi acceleration: constant relative energy gain.
 - Diffusive: shock crossing provoked by scattering off magnetic fluctuations.
- Production of a power-law (energy spectrum):
 - Test particle s = 2 (r = 4 strong non-relativistic shock)
 - Including adiabatic losses downstream and time dependent maximum energy s=2.1 (Bogdan & Völk83) or effect on compression ratio r<4...

Sources: caveats & issues

- <u>Caveats</u>: Non-liear effects (Drury & Malkov 01)
 - Backreaction: Energetic particle pressure 10-50% ram pressure => shock modification through higher compression.
 - 2) <u>Magnetic field amplification</u>: Energetic particles produces MF fluctuations (Bell 04, Pelletier+06, Marcowith+06, Marcowith & Casse 10)
 - Increase the confinement and $E_{
 m max}$
 - Pump energy to the EP population and soften the spectrum
 - Reduce the compression of the plasma; hence the backreaction

• <u>Issues</u>

- The whole process?
- The fate of accelerated particles $E_{\text{max}}(t)$?
- Injection process <=> shock formation
- Relative injection electrons/positrons-ions $K_{ep} \sim 10^{-2}$

Sources: interests for AMS-02

- Constrains on K_{ep}: Primary electrons.
- Secondaries positrons produced at source (pp collision) as it seems to be required from PAMELA's results.

Example: The old SNR model: 2 components in addition to the spallation component (also multiple acceleration in close bubbles)

- e^+/e^- : Two populations at sources (injected from the interaction of primaries and then advected downstream, further accelerated at shock) Blasi'09 => flat distribution of reaccelerated pairs (diffusion effects)
- Anti-protons prediction consistent with PAMELA measurements (same components as in the $e^{+/-}$ case) Blasi & Serpicolog
- Constraints from S/P ratios? Gamma-rays?:
 flat secondary component ...

Antip-p spectrum: old SNR model vs PAMELA

Slope of the A (accelerated) term sensitive to the diffusion regime IN the source $\frac{1}{2}$

Cosmic ray propagation

- · Cosmic ray release and propagation
- More complex effects:
 - Close to the sources
 - In the interstellar medium
 - Solar wind modulation (see dedicated talk)

CR release in the interstellar medium

Depends on:

- Shock dynamical properties (that may be modified by CRs & waves)
 - $\mathbb{R}_{sh}(t) \, \mathbb{V}_{sh}(t) \equiv \mathbb{D}(\mathbb{E}_{\mathbb{CR}\text{-}Max}) \propto t^{-1/5}$ (in Sedov phase)
- Magnetic field time evolution <=> microphysics
 - $\mathbb{D}(\mathbb{E}_{\mathbb{CR}\text{-max}}) \equiv \mathbb{C} \, \mathbb{F}_{\mathbb{L}}(\mathbb{E}_{\mathbb{max}})^{a} \propto \mathbb{B}(\mathfrak{t})^{-a} \, (\mathbb{B}(\mathfrak{t}) \propto \mathfrak{t}^{-a'/a})$
 - a: depends on the turbulence properties
- A SNR releases its CRs as a delta function at $E_{\rm max} \propto t^{-(a'+1/5)}$
- Role of external turbulence (local injection of fluctuations).

CR-Molecular clouds interaction

• Local CR gradient: CR confinement around sources (external turbulence and self-generated turbulence) Ptuskin+08: likely different than mean ISM.

Fujita+10: CR confine close to the SNR shock until the sonic regime is reached.

Particle transport microphysics

- DSA and transport in the ISM based on wave-particle interaction (wave with a wave number $k=\imath/\lambda)=>$ velocity pitch-angle scattering
 - Wave-particle resonance
 - Non resonant: advection, large scale chaotic motions ...
- Complete description exists only in quasilinear-theory (QLT) Schlickeiser o2
 - Particle motion is unperturbed!
 - \Rightarrow Limited to small turbulence level δ B << B.
- \bullet 3D turbulence usually approximated by a composite 2D-Slab model => analytical calculations: adapted to solar wind

Synchrotron resonance:

Energetic particle-MIHID wave

$$\omega << \Omega$$

$$R_g = v/\Omega \sim \lambda$$

See meeting in Montpellier

AMS-02 Meeting Annecy

More complex effects

- Burt simulations (see e.g. Biskamp oz) show (incompressible turbulence):
 - MHD turbulence is made of Alfvénic (Alfvén, slow magnetosonic like) modes \neq Slab + 2D
 - MHD turbulence is anisotropic (Higdon 84, Goldreich & Sridhar 95)
- QLT has some caveats:
 - Anisotropic turbulence is highly unefficient in scattering CRs.
 - 90° problem Perpendicular transport (infinite mfp)
- Several solutions proposed:
 - Resonance boadening in different non-linear models Yan & Lazarian 08, Shalchi 09

 $\lambda_{//} = L^{1/3} \lambda_{\perp}^{2/3}$

Chandran 04

18

Transport: Current issues

- I. The turbulence in the ISM is compressible: Fast magnetosonic waves (non resonant interaction)
 - Account from the different ISM phases & damping properly.
- 2. <u>Two basic approaches</u>:
 - Start from a model of turbulence and calculate the diffusion coefficients = model dependent (e.g. Casse+02)
 - Start from MIHID simulations and re-construct the diffusion coefficients = limited in scale resolution (e.g. Beresnyak+10)
- 3. Derive D_{PP}: stochastic Fermi acceleration (only available in QLT)
- 4. Include the possibility of non diffusive transport.
- 5. Combine the different sources of turbulence (large scale, self-generated close to the sources)
- 6. Include the retroaction of CRs on flows and hence turbulence.

Transport: interests for AMS-02

- Escape from the Galaxy controlled by the interaction with turbulence injected at large scales <=> S/P ratios.
 - Transport index δ = 0.3 (Kolmogorov), 0.5 (Kraichnan), 1 (shock turbulence)
 - Still pending issue; e.g. Kraichnan/Kolmogorov => Fast/Alfvén waves dominated dynamics.
- Escape from the sources controlled by the interaction with turbulence injected by the cosmic rays themselves <=> local CRs
 - Electrons/positrons measurements (especially beyond few tens GeV)
 can probe this physics + Radioactive elements + Gamma=ray
 emission can probe the physics of escape.
 - \Rightarrow Source census (see Tinnum's talk)
 - ⇒ Molecular cloud census
 - \Rightarrow Radiation fields census (see Timur's talk)
 - ⇒Test different source magnetic field relaxation models & time dependence of escape.