AMS detector performances

Fernando Barao

(barao@lip.pt)

LIP/IST - Lisbon, Portugal

Outline

- From AMS1 to AMS2
- AMS physics and requirements
- AMS sub-detectors
- Detector measurements and Particle identification
- Some results from Cosmic and Beam tests
- Conclusions

AMS on ISS : a long journey...

What is aiming AMS?

✓ AMS is a large acceptance (~ 0.5 m².sr) spectrometer designed to operate in the International Space Station (ISS) for a long duration stay (3 years)

- Good particle identification power (including photons)
- ✓ Able to measure cosmic spectra from 500 MeV to few TeV
- ✓ Charge identification up to Iron (Z=26) and light isotopic separation
- Search for antimatter and darkmatter with unprecedent sensitivity

Detector Requirements

Antimatter

DarkMatter

Astrophysics

antinuclei production from matter collisions is strongly suppressed

$$(p + ISM \rightarrow \bar{N} + \dots)$$

$$\frac{\bar{N}}{\bar{p}} \propto \exp\left(-\frac{M_N - m_p}{80\ MeV}\right)$$

detection of antinuclei
would be a clear signal of
existence of antimatter

ullet e^+ and $ar{p}$ produced in p+ISM collisions

• physics background :

$$p/e^+ \sim 10^3$$
$$e^-/\bar{p} \sim 10^2$$

signals : \bar{p} , e^+ , γ , \bar{d}

a good e,p separation is needed

$$B/S \sim 1\% \Downarrow$$

Rejection Factor $\sim 10^5$

detection of a large range of nuclei (Z)

ability to identify different isotopes

detection of gamma rays

- charge identification
- rigidity measurement
- velocity measurement
- e.m energy measurement

- e/p separation
- albedo rejection
- strong system redundancy

From AMS1 to AMS2

Improved capabilities

✓ larger acceptance

$$\sim 0.5 \ m^2.sr$$

- ✓ Superconducting magnet a magnetic field ~ 8 times larger
- ✓ larger silicon Tracker 8 double-sided layers $\sim 6.5 \ m^2$ silicon surface
- \checkmark a momentum resolution improved a factor ~ 10

New Detector systems

- New Cerenkov Detector (RICH)
- Electromagnetic Calorimeter (ECAL)
- ✓ Transition Radiation Detector (TRD)

TRD: Transition Radiation

Detector

TOF: (s1,s2) Time of Flight Detector

MG: Magnet

TR:

Silicon Tracker

ACC:

Anticoincidence Counter

AST:

Amiga Star Tracker

TOF: (s1,s2) Time of Flight Detector

RICH:
Ring Image
Cherenkov Counter

EMC; Electromagnetic Calorimeter

AMS Alpha Magnetic Spectrometer Integration MIT

AMS Sub-detectors

Superconducting Magnet

Construction

- ✓ 14 superconducting coils
- geometrical configuration to ensure a null magnetic dipole moment
- minimization of the stray field outside magnet
- indirect cooling system based on Superfluid Helium
 - ightharpoonup cold mass : 2000~kg
 - helium vessel capacity : 2500 liters

- $lap{\prime}$ an intense magnetic field : $\sim 0.9~T$
- ✓ a large bending power : $\sim 0.8~T.m^2$

Time-of-Flight (TOF)

Construction

- 4 scintillator planes
- \checkmark a total of 34 paddles large of 12 cm
- ✓ light guides twisted/bended to minimize magnetic field effects
- ✓ 2/3 PMT's for light readout at both ends

- \checkmark fast trigger (3 × 4) on 200 nsec
- velocity measurement
- ✓ absolute charge measurement
- ✓ upward/dowward particle separation (10^{-9})

Time-of-Flight (TOF)

Construction

- ✓ 4 scintillator planes
- \checkmark a total of 34 paddles large of 12 cm
- ✓ light guides twisted/bended to minimize magnetic field effects
- ✓ 2/3 PMT's for light readout at both ends

- \checkmark fast trigger (3 × 4) on 200 nsec
- ✓ velocity measurement
- absolute charge measurement
- ✓ upward/dowward particle separation (10^{-9})

Silicon Tracker

Construction

- ✓ a total of 5 planes (3 inside the magnet and 2 outside)
- 8 layers of double-sided silicon microstrip sensors
- \checkmark a total of ~ 2500 sensors arranged on 192 ladders
- \checkmark 7 15 sensors per ladder

- ✓ 8 independent position measurements of the particle track
- ✓ particle rigidity $(R \equiv \frac{pc}{Z})$ from track reconstruction
- ✓ electric charge (Z) from energy deposition (dE/dx)

Transition Radiation Detector (TRD)

Construction

- ✓ modules (328) made of fleece radiator and straw tubes
 - ▶ 16 straw tubes per module
 - radiator thickness of 23 mm
 - straw tubes ($\Phi=6~mm$) filled with Xe/CO_2
- ✓ 20 layers assembled on a octogonal shape
 - ▶ 4 layers on upper/lower part along the bending plane
 - ▶ 12 layers on the middle transversally placed

It provides

- \checkmark evaluation of the particle $\gamma \equiv \frac{E}{m}$ boost
- separation of particles with extreme mass differences

X-ray photons radiated when particle crosses radiator boundaries ($\sim 100\ transitions$)

- $E_{\gamma} \sim \gamma \; (eV)$
- $N_{\gamma} \sim \alpha \ N_{transitions}$

detectable signal for $\gamma \gtrsim 1000$

Ring Imaging Cerenkov Detector (RICH)

Construction

- ✓ proximity focusing Ring Imaging Detector
- ✓ dual solid radiator configuration low index aerogel: $n=1.050,\,2.5\;cm$ thickness sodium fluoride: $n=1.334,\,0.5\;cm$ thickness
- ✓ conical reflector 85% reflectivity
- photomultiplier matrix680 multipixelized (4 × 4) detectors
- ✓ spatial pixel granularity : $8.5 \times 8.5 \ mm^2$

- \checkmark accurate particle velocity measurement $\Delta \beta/\beta \sim 0.1\%$ for protons
- ightharpoonup electric charge determination $\Delta Z \sim 0.2$
- albedo rejection directional sensitivity

Ring Imaging Cerenkov Detector (RICH)

Construction

- ✓ proximity focusing Ring Imaging Detector
- ✓ dual solid radiator configuration low index aerogel: $n=1.050,\,2.5\;cm$ thickness sodium fluoride: $n=1.334,\,0.5\;cm$ thickness
- ✓ conical reflector 85% reflectivity
- photomultiplier matrix680 multipixelized (4 × 4) detectors
- ✓ spatial pixel granularity : $8.5 \times 8.5 \ mm^2$

- \checkmark accurate particle velocity measurement $\Delta \beta/\beta \sim 0.1\%$ for protons
- ightharpoonup electric charge determination $\Delta Z \sim 0.2$
- albedo rejection directional sensitivity

Electromagnetic Calorimeter (ECAL)

Construction

- ✓ sampling e.m. calorimeter $658 \times 658 \times 166 \ mm^3$
- ✓ lead-scintillating fibers structure
- 9 superlayers
 10 layers of lead+fibers piled up
 disposed along X and Y alternately
- $\checkmark \sim 17X_0 (\sim 1cm)$ radiation lengths
- \checkmark multi-pixel (2 \times 2) photomultiplier's large dynamic range
- \checkmark cell granularity $\sim 0.5~R_M$ (35 fibers to rivi pixel)
 - 18 samplings of e.m shower

- $\checkmark e^{\pm}, \gamma$ energy measurement
- ✓ particle direction
- fast trigger signal for photons tagging (dynode)

Particle measurements

velocity, charge, energy, momentum

Velocity measurement (3) with TOF

the particle velocity is derived from measuring the time difference (Δt) between the upper and lower scintillator planes and the track length (Δs)

$$\beta = \frac{\Delta s}{c \Delta t}$$

$$\frac{\sigma \beta}{\beta} = \frac{\beta \mathbf{c}}{\Delta \mathbf{s}} \sigma_{\mathbf{t}}$$

Velocity measurement (β) with TOF

the particle velocity is derived from measuring the time difference (Δt) between the upper and lower scintillator planes and the track length (Δs)

$$\beta = \frac{\Delta s}{c \Delta t}$$

$$\frac{\sigma \beta}{\beta} = \frac{\beta \mathbf{c}}{\Delta \mathbf{s}} \sigma_{\mathbf{t}}$$

- ✓ single pad error (σ_t) depends on :
 - signal shape (σ_1/\sqrt{N})
 - photons path length dispersion $(\sigma_2 \ d/\sqrt{N})$
 - electronic noise (σ_3)

Velocity measurement with the RICH

- ✓ The AMS Tracker provides the **particle** direction (θ, ϕ) and impact point at the RICH radiator
- ✓ Ring of cerenkov photons is function of θ_c geometrical and likelihood methods applied to reconstruct θ_c

 \checkmark Velocity obtained from θ_c measurement

$$\beta = 1/n \, \cos \theta_c$$

Velocity measurement with the RICH

- ✓ The AMS Tracker provides the **particle** direction (θ, ϕ) and impact point at the RICH radiator
- ✓ Ring of cerenkov photons is function of θ_c geometrical and likelihood methods applied to reconstruct θ_c

 \checkmark Velocity obtained from θ_c measurement

$$\beta = 1/n \cos \theta_c$$

- \checkmark sources of β uncertainties :
 - pixel size (8.5 mm)
 - ightharpoonup radiator chromaticity, $n(\lambda)$
 - radiator thickness $(h \tan \theta_c)$ photon emission point unknown

$$\frac{\Delta\beta}{\beta} = \tan\theta_c \frac{\Delta\theta_c}{\sqrt{N_{pe}}}$$

	$\Delta heta_c^{geom}$ (mrad)		$\Delta \theta_c^{chrom}$	$\Delta heta_{f c}$	$(\Delta eta/eta)_{ m hit}$
	$\Delta \theta_c^{thick}$	$\Delta \theta_c^{pixel}$	(mrad)	(mrad)	$(\beta \simeq 1)$
AGL	3.3	4.6	3.2	6.5	$2.1 \ 10^{-3}$
NaF	0.3	0.6	4.8	4.8	$4.2\ 10^{-3}$

RICH velocity reconstruction: results

Simulation results

Test Beam (2003) results: fragmented ions

velocity reconstr error

Charge measurement (Z) with TOF

- ightharpoonup energy deposited on scintillator $\Delta E \propto Z^2$
- \checkmark up to 4 $\triangle E$ samplings
- dominant uncertainty comes from energy deposition fluctuations
- \checkmark test beam data with fragmented ions charge separation up to $Z\sim15$

Measured number of photoelectrons

Charge measurement (Z) with TOF

- ightharpoonup energy deposited on scintillator $\Delta E \propto Z^2$
- \checkmark up to 4 $\triangle E$ samplings
- dominant uncertainty comes from energy deposition fluctuations
- \checkmark test beam data with fragmented ions charge separation up to $Z\sim15$

Measured number of photoelectrons

Charge measurement (Z) with Tracker

 \checkmark energy deposited on silicon sensors (300 $\mu\mathrm{m}$)

$$\Delta E \propto Z^2$$

- \checkmark up to 8 $\triangle E$ samplings
- ✓ 6 ladders were tested (2003) with fragmented ions charge separation up to $Z\sim26$

Charge measurement (Z) with Tracker

 \checkmark energy deposited on silicon sensors (300 $\mu\mathrm{m}$)

 $\Delta E \propto Z^2$

- \checkmark up to 8 $\triangle E$ samplings
- ✓ 6 ladders were tested (2003) with fragmented ions charge separation up to $Z\sim26$

Charge determination with the RICH

Incident particle (x,y,0,0)

$$Z^2 \propto rac{N_{p.e}}{arepsilon}$$

 $\varepsilon \equiv \text{ring efficiency}$

ring acceptance, γ absorption,...

• statistical :
$$\Delta N_{p.e} = \sqrt{N_{p.e} \left(1 + \sigma_{p.e}^2\right)}$$

- systematics from non-uniformities :
 - radiator : n, thickness, clarity, ...
 - detection : LG, PMT, temperature effects, ...

$$\Delta Z = \frac{1}{2} \sqrt{\frac{1 + \sigma_{p.e}^2}{N_0} + Z^2 \left(\frac{\Delta \varepsilon}{\varepsilon}\right)^2}$$

✓ results from test beam (2003) with fragmented ions
20 00003 Test Beam (2004)

Rigidity measurement

- \checkmark charged particles bend under magnetic field ($B \sim 0.8 \text{ T}$)
- 8 silicon double-sided layers crossed
- \checkmark spatial resolution $10~\mu m$ on bending plane $30~\mu m$ on non-bending plane
- \checkmark rigidity, R = pc/Ze, is measured
- \checkmark expected resolution \sim 1% at 10 GV and MDR $\sim~2$ TV for protons

Electromagnetic energy measurement

- electromagnetic shower sampled18 times
- energy linearity within 2% (up to 250 GeV)
- test beam results (2007): electrons 6-250 GeV

Mass reconstruction

$$\left(\frac{\sigma_{\mathbf{m}}}{\mathbf{m}}\right) = \left(\frac{\sigma_{\mathbf{p}}}{\mathbf{p}}\right) \oplus \gamma^{\mathbf{2}} \left(\frac{\sigma_{\beta}}{\beta}\right)$$

Mass reconstruction

$$\left(\frac{\sigma_{\mathbf{m}}}{\mathbf{m}}\right) = \left(\frac{\sigma_{\mathbf{p}}}{\mathbf{p}}\right) \oplus \gamma^{\mathbf{2}} \left(\frac{\sigma_{\beta}}{\beta}\right)$$

Particle identification

anti-protons, positrons, gammas, isotopes

antiproton (\bar{p}) detection

✓ backgrounds

$$\Phi_p/\Phi_{\bar{p}} \sim 10^4 - 10^5$$
 $\Phi_{e^-}/\Phi_{\bar{p}} \sim 10^2$

- ✓ selection
 - TRD : e/p discrimination
 - Tracker : sign
 - TOF/RICH: velocity (low energy region)
 - ECAL : E/P (high energy region)

- background rejection
 - $p: 10^6 10^4$ (up to 400 GeV/c)
 - $\bullet e^- : 10^3 10^4$
- √ p̄ acceptance
 - $\bullet \sim$ 0.16 m 2 .sr (up to 16 GeV/c)
 - \sim 0.03 m².sr (16-300 GeV/c)

positron (e^+) detection

✓ backgrounds

$$\Phi_p/\Phi_{e^+} \sim 10^3 - 10^4$$
 $\Phi_{e^-}/\Phi_{e^+} \sim 10^8$

- ✓ selection
 - TRD : e/p discrimination
 - Tracker : sign
 - TOF/RICH: velocity (low energy region)
 - ECAL : E/P (high energy region)

- background rejection
 - ullet \mathbf{p} : $\sim \mathbf{10^6}$ (up to 400 GeV/c)
 - $\bullet~e^-:\sim 10^4$
- √ p̄ acceptance
 - $\bullet \sim 0.15 \text{ m}^2.\text{sr}$ (up to 10 GeV/c)
 - $\bullet \sim 0.04 \text{ m}^2.\text{sr} (10-300 \text{ GeV/c})$

photon (γ) detection

Converted photon $\gamma \to e^-e^+$

- \checkmark some matter before the 1st TOF layer $\ell \sim 0.25~X_0$ conversion probability $\sim 20~\%$
- ✓
 γ energy and direction reconstructed from charged pair
- \checkmark energy range limited by double track reconstruction ($E \sim 200~GeV$)
- ✓ large angular view $(\theta_{max} \sim 42^{\circ})$

mean acceptance (10 - 250GeV) $\sim 0.05 \text{ m}^2.\text{sr}$

Non-converted photon

- \checkmark direction of reconstructed photon inside fiducial region ($\theta_{max} \sim 22^{\circ}$)
- \checkmark large rejection power against protons and electrons ($\sim 10^6$)
- ✓ large energy range (8 $GeV 10^3 GeV$)

Light isotopes

Be¹⁰/Be⁹

Some preliminar results Cosmic runs (Dec 2009) Test Beam (Feb 2010)

Cosmic runs 2009: RICH mass reconstruction

cosmic rays : proton mass reconstructed with the RICH (aerogel and NaF radiators)

Cosmic runs 2009: TOF mass reconstruction

cosmic rays : proton and deuteron masses reconstructed with the TOF

Test Beam 2010 : RICH β reconstruction

AMS Event Display

Run 1265403904/ 439 Fri Feb 5 22:05:25 2010

Conclusions

Measurement	statistics	energy	physics goals
e^+	\sim 10 7	400 GeV	
$ar{p}$	\sim 10 6	400 GeV	Dark Matter
γ s	\sim 10 5	$10^3{ m GeV}$	
$\overline{\mathbf{D}}$	\sim 10	8 GeV/A	
D	\sim 10 8	8 GeV/n	
³ He	\sim 10 8	8 GeV/n	Astrophysics
¹⁰ Be	\sim 10 5	7 GeV/n	
Measurement	sensitivity	rigidity	physics goals
He/He	10 ⁻⁹	10 ³ GV	Antimatter
$\overline{\mathrm{C}}/\mathrm{C}$	10 ⁻⁸	10 ³ GV	