ACDM and Tensions

A. Blanchard

Toulouse, December 10th, 2021

э

◆□▶ ◆圖▶ ◆臣▶ ◆臣▶ -

A snapshot of history

GW@Tlse 10/12/2021

▲ロ > ▲母 > ▲目 > ▲目 > ▲目 > ● ▲ ●

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Neutrinos as non-baryonic dark matter.

Neutrinos as non-baryonic dark matter.

Peebles (1981) CDM $\Rightarrow \delta T/T < 10^{-4}$ and LSS $\xi(r)$ has the right shape...

▲日 ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ● ● ● ●

Neutrinos as non-baryonic dark matter.

Peebles (1981) CDM $\Rightarrow \delta T/T < 10^{-4}$ and LSS $\xi(r)$ has the right shape...

▲日 ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ● ● ● ●

Peebles & Ratra (1988) cared about Λ and introduced quintessence...

Evidence for acceleration...

GW@Tlse 10/12/2021

▲ロ > ▲母 > ▲目 > ▲目 > ▲目 > ● ▲ ●

Evidence for acceleration...

SNIa Hubble-Lemaître diagramm (1998-1999)

Planck results...

Planck Collaboration: The Planck mission

Planck results...

Parameter	TT+low. 68% limits	TE+low E 68% limits	EE+lowE 68% limits	TT,TE,EE+lowE 68% limits	TT,TE,EE+lowE+lensing 68% limits	TT,TE,EE+lowE+lensing 68% limits	
Deh ²	0.02212 ± 0.0002.	0.02249 ± 0.00025	0.0240 ± 0.0012	0.02236 ± 0.00015	0.02237 ± 0.00015	0.02242 ± 0.00014	
D _c h ²	0.1206 ± 0.0021	0.1177 ± 0.0020	0.1158 ± 0.0046	0.1202 ± 0.0014	0.1200 ± 0.0012	0.11933 ± 0.00091	
1009MC	1.04077 ± 0.00047	1.04139 ± 0.00049	1.03999 ± 0.00089	1.04090 ± 0.00031	1.04092 ± 0.00031	1.04101 ± 0.00029	
*	0.0522 ± 0.0080	0.0496 ± 0.0085	0.0527 ± 0.0090	0.0544+0.000	0.0544 ± 0.0073	0.0561 ± 0.0071	
n(10 ¹⁰ A ₁)	3.040 ± 0.016	3.018+0.020	3.052 ± 0.022	3.045 ± 0.016	3.044 ± 0.014	3.047 ± 0.014	
• • • • • • • • • • • • •	0.9626 ± 0.0057	0.967 ± 0.011	0.980 ± 0.015	0.9649 ± 0.0044	0.9649 ± 0.0042	0.9665 + 0.0038	
H ₀ [km s ⁻¹ Mpc ⁻¹]	56.88 ± 0.92	68.44 ± 0.91	69.9 ± 2.7	67.27 ± 0.60	67.36 ± 0.54	67.66 ± 0.42	
DA	0. "9±0.0"	0.699 ± 0.012	0.711+0.033	0.6834 ± 0.0084	0.6847 ± 0.0073	0.0000 - 0.0006	
n _m	0.321 ± 0.013	0.301 ± 0.012	0.289+0.026	0.3166 ± 0.0084	0.3153 ± 0.0073	0.3111 ± 0.0056	
0 _m h ²	0.1434 ± 0.0020	0.1408 ± 0.0019	0.1404+0.0034	0.1432 ± 0.0013	0.1430 ± 0.0011	0.14240 ± 0.00087	
Ωmh ³	0.09589 ± 0.00046	0.09635 ± 0.00051	0.0981+0.0016	0.09633 ± 0.00029	0.09633 ± 0.00030	0.00625 _ 0.00030	
78	0.8118 ± 0.0089	0.793 ± 0.011	0.796 ± 0.018	0.8120 ± 0.0073	0.8111 ± 0.0060	0.8102 ± 0.0060	
$S_8 \equiv \sigma_8 (\Omega_m/0.3)^{0.5}$.	0.840 ± 0.024	0.794 ± 0.024	0.781+0.002	0.834 ± 0.016	0.832 ± 0.013	0.825 - 0.011	
r ₈ Ω ^{0.25}	0.611 ± 0.012	0.587 ± 0.012	0.583 ± 0.027	0.6090 ± 0.0081	0.6078 ± 0.0064	0.6051 ± 0.0058	
tre	7.50 ± 0.82	7.11+0.91	7.1040.87	7.68 ± 0.79	7.67 ± 0.73	7.82 ± 0.71	
10 ⁹ A _s	2.092 ± 0.034	2.045 ± 0.041	2.116 ± 0.047	2.101+0.031	2.100 ± 0.030	2.105 ± 0.030	
10 ⁹ Ase ⁻² r	1.884 ± 0.014	1.851 ± 0.018	1.904 ± 0.024	1.884 ± 0.012	1.883 ± 0.011	1.881 ± 0.010	
Age [Gyr]	13.830 ± 0.037	13.761 ± 0.038	13.64+0.16	13.800 ± 0.024	13.797 ± 0.023	13.787 ± 0.020	
Parameter	TT	+lowE TT, T	E, EE+lowE	TT, TE, EE+lowE+	lensing TT, TE, EE	+lowE+lensing+BAO	
Ω_{K} $\Sigma m_{y} [eV]$	-0.0 -0.0	56 ^{+0.044} 0.537 -0	$0.044^{+0.033}_{-0.034}$ < 0.257	$-0.011^{+0.013}_{-0.012}$ < 0.241	0	$0.0007^{+0.0037}_{-0.0037}$ < 0.120	
N _{eff} 3.0 Y _P 0.24 dn _s /d ln k -0.0		0+0.57	$2.92^{+0.36}_{-0.37}$ $.240^{+0.024}_{-0.025}$ $0.006^{+0.013}_{-0.013}$	2.89+0.36		2.99+0.34	
		6 ^{+0.039} 0		$0.239_{-0.025}^{+0.024}$		0.242+0.023	
		-0		$-0.005^{+0.013}_{-0.013}$		-0.004+0.013	
r _{0.002}		0.102	< 0.10/	< 0.101	· · · · · · · · · · · · · · · · · · ·	< 0.106	
w ₀	1.	-0.48	1.38-0.41	-1.5/-0.40		-1.04-0.10	

LSS results

æ

LSS results: eBOSS

GW@Tlse 10/12/2021

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへの

◆□▶ ◆圖▶ ◆臣▶ ◆臣▶ 臣 - のへで

Physical origin simple: CMB(T) + BBN + SNIa

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

Physical origin simple: CMB (T) + BBN + SNIa

Physical origin simple: CMB (T) + BBN + SNIa

・ロト ・日下 ・日下

Provides independant measure of $H_0...$

Physical origin simple: CMB (T) + BBN + SNIa

(日)

-

Provides independant measure of $H_{0...} = 67.5 \pm 1 \text{ km/s/Mpc}$

Where the tensions come...

GW@Tlse 10/12/2021

(ロ) (型) (主) (主) (三) の(で)

Where the tensions come...

 H_0 can be measured "locally"...

H₀ can be measured "locally"...

The Planck clusters-CMB tension

(日)

э

The Planck clusters-CMB tension

The "tension" corresponds to a deficit by a factor \sim 3.

The Planck clusters-CMB tension

The "tension" corresponds to a deficit by a factor \sim 3. The "tension" is relieved if $\sigma_8 \sim 0.75$.

• Pb in the data (selection,...)

・ロト ・四・ ・ヨ・ ・ヨ・ うへの

- Pb in the data (selection,...)
- Astrophysical modeling. Calibration, ...

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

- Pb in the data (selection,...)
- Astrophysical modeling. Calibration, ...

• New physics?

The cluster-CMB tension (in Λ CDM)

No sign of systematics between x-ray clusters ($z \sim 0.05$) and SZ clusters ($z \sim 0.25$)

3

X-ray

• □ > < 同 > < 三 >

Sakr, Ilić & Blanchard(2018)

X-ray

・ロト ・ 日 ・ ・ 日 ・

X-ray

・ロト ・ 日 ・ ・ 日 ・

э

Sakr, Ilić & Blanchard(2018) , Blanchard & Ilić (2021) From $\geq 6\sigma$...

X-ray

・ロト ・日下・ ・日下

Sakr, Ilić & Blanchard(2018) , Blanchard & Ilić (2021) From $\geq 6\sigma$...down to 0!

What could be the solution?

Astrophysics

GW@Tlse 10/12/2021

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Astrophysics

• Calibration issue.

GW@Tlse 10/12/2021

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

Astrophysics

• Calibration issue.

New physics

GW@Tlse 10/12/2021

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

Astrophysics

• Calibration issue.

New physics

• Modification in the gravitational sector (MG).

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

X-ray+SZ+CMB but free σ_8 .

<**∂** ► < **⇒**

Ilić, Sakr & Blanchard(2019)

▲ロ > ▲母 > ▲目 > ▲目 > ▲目 > ● ▲ ●

• weak lensing

GW@Tlse 10/12/2021

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

- weak lensing
- RSD (redshift space distorsion) $\rightarrow f\sigma_8$

- weak lensing
- RSD (redshift space distorsion) $\rightarrow f \sigma_8$

э

Without Planck calibration on σ_8

Planck+eBOSS+X-ray+SZ Free σ_8 .

・ロト ・日下 ・日下

Blanchard & Ilić (2021)

Without Planck calibration on σ_8

Planck+eBOSS+X-ray+SZ Free σ_8 .

・ロト ・聞と ・ヨト ・ヨト

э

Blanchard & Ilić (2021)

• ΛCDM is a 40-years old theory that matches remarkably well data.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

• ΛCDM is a 40-years old theory that matches remarkably well data.

• Tensions are a serious concern anyway.

• ΛCDM is a 40-years old theory that matches remarkably well data.

- Tensions are a serious concern anyway.
- CMB-cluster counts tension is real for
 - $1-b\sim$ 0.8 for ACDM.

- ΛCDM is a 40-years old theory that matches remarkably well data.
- Tensions are a serious concern anyway.
- CMB-cluster counts tension is real for $1-b\sim 0.8$ for $\Lambda {\rm CDM}.$
- In all "simple" scenarios $1 b \sim 0.6$ is preferred (Planck: $1 b = 0.620 \pm 0.029$).

◆ロト ◆聞 ▶ ◆臣 ▶ ◆臣 ▶ ○ 臣 ○ のへで

- ΛCDM is a 40-years old theory that matches remarkably well data.
- Tensions are a serious concern anyway.
- CMB-cluster counts tension is real for $1-b\sim 0.8$ for $\Lambda {\rm CDM}.$
- In all "simple" scenarios $1 b \sim 0.6$ is preferred (Planck: $1 b = 0.620 \pm 0.029$).

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○○

• Dynamical from eBOSS $1 - b = 0.608^{+0.063}_{-0.089}$

- ΛCDM is a 40-years old theory that matches remarkably well data.
- Tensions are a serious concern anyway.
- CMB-cluster counts tension is real for $1-b\sim 0.8$ for $\Lambda {\rm CDM}.$
- In all "simple" scenarios $1 b \sim 0.6$ is preferred (Planck: $1 b = 0.620 \pm 0.029$).
- Dynamical from eBOSS $1 b = 0.608^{+0.063}_{-0.089}$
- No tension on σ_8 at low z_{\cdots}

Thank You

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○○