V. Langen et al. (in prep.)

Characterizing the Circumgalactic Medium of Quasars at z~2.2 through Ha and Lya Emission

Vivienne Langen, PhD Student vivienne.langen@l2it.in2p3.fr Laboratoire des 2 Infinis - Toulouse (L2IT)

IRAP / L2IT Mini-symposium sur les ondes gravitationnelles, 10 December 2021

Collaborators: S. Cantalupo (ETHZ / University of Milano Bicocca) C. C. Steidel, Y. Chen, S. Gallego (Caltech) G. Pezzulli (ETHZ / University of Groningen) 1

Outline

- 1. Motivation and Preliminaries
 - <u>Why</u> do we care about the CGM?
 - <u>How</u> can we study it?
- 2. Lyman- α observations
- 3. Hydrogen H α follow-up
- 4. Comparison between $Ly\alpha$ and $H\alpha$
 - Emission mechanism
 - Physical properties of the gas
- 5. Conclusion and future prospects

1. Motivation and Preliminaries

1. Motivation

- Galaxies fueled by gas from IGM/CGM
- How does it accret onto galaxies?
- The detailed physical properties are still matter of active research

1. Preliminaries

- Snap-shot of illustris simulation
- Most material relatively cold, $T\sim 10^4\, K$ and confined to filaments

- Environment around galaxies
 CGM
- How can we study the CGM?
- → Gas around active nuclei '*illuminated*'
- → 'Fluorescent' emission

The cosmic web in emission

- Most abundant element: Hydrogene
- → Hydrogen emission lines
- → Most prominent: Lya

<u>Studied extensively</u>: Borisova E., et al., 2016, Cai Z., et al., 2017, O'Sullivan D., et al 2019, Etc, ...

- Lya emission mechanism is very complex
- → Resonant line
- → No direct tracer of kinematics
- How can we understand its emission?
- → Non-resonant line: Hydrogen Ha

Emission mechanism

GOALS

- Pilot study: detect $H\alpha$
- Constrain the <u>emission</u>
 <u>mechanisms</u>
- Infer properties of the gas, e.g. density, temperature, morphology
- Investigate the gas kinematics

2. Ly α observations

The Keck Cosmic Web Imager

 \rightarrow Extended Lya emission: brightest and most extended for Ha follow-up

Preliminary Lyα results

Gas

Galaxies

3. H α follow-up

The Multi-Object Spectrograph for Infrared Emission

Slit configuration

→ Cover maximum flux

$H\alpha$ results

- SNR > 2
- Spatial extend >2 arcsec (20 kpc)
- Zero velocity corresponds to peak of the integrated Lya emission line of the entire nebula
- Spectral width ~400 km/s
 -> relatively narrow
- Double peak structure
 -> complex origine

4. Comparison between Ly α and H α

Distance to QSO [arcsec]

10010

-6

ADEC [arcsec]

1" slit (MOSFIRE)

5.0

0.5 0.25 0.0 -0.25 gB^{r/va} 0.0

s/cm²/arcs 2.5

ő

- Create pseudo-slit with equal parameters and units
- Emission extends >3 arcsec (40 kpc)
- Spectral width >800 km/s

- Directly compare the emission \rightarrow
- Flux ratios in function of distance to QSO \rightarrow
- Spectral projection in function of distance to \rightarrow QSO

Flux apertures

Flux ratio in function of distance from the QSO

• Total flux ratio :

$$rac{{
m F}_{{
m Ly}lpha}}{{
m F}_{{
m H}lpha}}=\,3.6\,\pm\,0.3$$

- Consistent with recombination radiation
- In virginity of the QSO: ratio < 8.3
- → What could reduce this ratio?
- \rightarrow Look at the spectral shapes

5. Discussion

- → Emission dominated by recombination
- \rightarrow Why ratio < 8.3?
 - Literature value originally derived for ISM around galaxies: higher densities lead to higher ratios
 - Lya suffers more from dust absorption (longer wavelength)

- radiative transfer effects: diffusion in space and frequency

Look at projected line shapes

Spectral shapes in function of distance from the QSO

- Similar line profiles
- Lya boradens more outwards
- Little peak movement
 -> quiescent kinematics
- Complex origin of gas cloud

GOALS

- Extended $H\alpha$ emission
- Constrain the <u>emission</u>
 <u>mechanisms</u>
- Infer <u>properties of the gas</u>, e.g. density, temperature, morphology
- Investigate the gas kinematics

5. Conclusion and future prospects

5. Conclusion and outlook

- Quiescent kinematics
- Complex origin of gas cloud
 E.g. multiple structures in projection
- Less neutral gas then around galaxies
- Clumpy, dense medium
 - higher clumpyness than currently resolved in simulations
- → Integral Field studies with $H\alpha$
- → Higher sample of nebula
- → JWST
- → Numerical models of Ly α /H α emission

Thank you very much for your attention !

I am happy to answer further questions?

Vivienne Langen, L2IT

White Light Images

25

Some relations

- Size of BH and size (i.e. stellar mass) of host galaxies seem to correlate Why (?):
 - AGN feedback (strong outflow, jets, winds) enhance SFR as well as their heavier accretion gets more gas into the galaxy
 - (-> study by Ding et al (U. of California): hydrodynamic simulations) And outflows we see here are indicators for AGN feedback!
- More about host galaxy?

No, because after PSF subtraction there is nothing left of galaxy emisison

The Keck Cosmic Web Imager

- Wide-field integral field spectrograph
- Optimized for low surface brightness phenomena

Target selection

- 3 targets from SDSS catalog:
 QSO magnitude m > 18.5
 redshift 2.25 < z < 2.27
- Extended Ly a emission
 -> brightest and most extended for Hα follow-up

The Multi-Object Spectrograph for Infrared Emission

- Slit spectrograph optimal for faint emission
- K-band range to detect H α

Slit configuration

- Longslit: 120 arcsec
 -> exceeds KCWI FoV
- Wide slit: 1 arcsec
 -> encompass maximum flux
- Sky position angle: 80 deg

