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How does an 1solated neutron star emit
continuous gravitational waves (cGW) !

Any non-axisymmetric mass quadrupole distribution:
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+ Interior fluid oscillations

+ Wobble / Precession




cGW signal amplitude and frequencies
will depend on many factors

+ For deformed NSs: chW = zfspin and /or chW = Jspin
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+ For fluid oscillations: Jf.qgw ~ fspin/ 3

+ For free precession: Jeaw = 2fspin and feow = Jspin T Jprec



There are numerous potential sources of
cGW from inside our Galaxy.

+ Demography: 108 NSs in the
Galaxy, and ~200 000 pulsars
(Lorimer, 2008)

+ Catalogued: 3000+ NSs
known as pulsars (manchester et al.
2005) and X-ray sources

+ Relevant: About 300 NSs with
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How to search for

cGW from isolated -
NSs ?

Characteris

The targets for searches are selected

Frequency / Hz

with the following criteria:

» Within the LVK frequency range

A 4

Youngest NSs
- higher B-field
- High spin-down power
- with potential fluid oscillations

v

Precisely timed NSs (spin, location, proper motion - see side note)

b\

Nearby NSs if possible, since s « d

v

Glitching NSs (see aside note)



Pulsars timing: Accounting
Note

for every single rotation.

This allows extremely precise
measurements of :
+ the rotation frequency
+ the frequency derivative
(spin down, or up)
+ the location and proper
motion via parallax

Time —

NOTE: The spin-down power
E < fin fspin tells us the loss rate
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A Sieniawska & Bejger, 2019
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Computational cost

+ Targeted searches with exact values of f,;, fspin, ete

+ allow for small mismatch between f;, and f.gw

+ Possible if differential rotation (core/ crust)...
+ Directed searches (i.e., fixed location) for NS with unknown f.

spin’

+ Blind search, for people with big computers



Results 1: Targeted searches on O2+03 data sets

236 pulsars with f,_. . > 10 Hz having timing information from radio and X-ray
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Results 1: Targeted searches on O2/03 data sets

23 pulsars have upper limit on /i, lower that their spin down limits,
ie, hy/hyP < 1

Best constraint for 407
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Results 1: Targeted searches on O2/03 data sets

For these 23 pulsars, we constrain their ellipticity.
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Results 2: Narrow-band searches from O3

+ 18 key pulsars with timing information from radio or X-ray

+ Selection: expected spin-down limit within 3 times the

expected sensitivity of the O3 run

+ The nature of the search is somewhat less sensitive than the
targeted search



Recent Directed Searches: The case of

(Cassiopeia A

+ If fopin < <Jopino and spin-down
due to cGW emission:

= (2310720 (L) (10003 (1)
r T 0

+ ForCasA h... ~12x107%*

age

+ Search in f,

spin

= (20,956| Hz

+ For assumed ages > 300 years

Credits: NASA CXO $ hage < 6.3 X 1()—26

Neutron star: X-ray point source, no + £6<3%107%for fs
pulsations, so no spin information

= 300 Hz
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Why keep searching ?

Finding cGW would help:

+ Constrain the equation of state of dense matter
+ Determine the phase of cGW vs EM (lock, drift ?)
+ Testing GR and theories of gravity



What about
Fast Radio Bursts?

+ Millisecond duration, bright, and Mpc-distant bursts of radio
+ Repeating vs non-repeating

+ Non-destructive vs cataclysmic events

+ Recent discoveries:
+ FRB < Galactic magnetar (high B-field neutron star)

+ FRB <« extragalactic globular cluster (unlikely to host magnetars)



What about
Fast Radio Bursts?

+ FRB < GW association ?
+ Nothing found in 2007-2013 for 14 FRBs (Abbott et al. 2016)
+ No publication since then with runs O1, O2 and O3

4+ Possible sources of FRB < GW associations:
+ Magnetar bursts?

+ Compact object mergers?

+ What would be the frequency of GW signals associated with FRBs ?



And afterwards? ET, | e i
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Conclusion

+ Still no detection, but the search must go on
+ With different methods

+ For the association with FRBs

+ Slower neutron stars still remain out of range...until
LISA (maybe) or DECIGO.

For more info, see two recent reviews:
+ Sieniawska & Bejger, Universe, 2019
+ Haskell & Schwenzer, 2021 (ArXiv: 2104.03137)



Pulsar Timing Arrays

HUNTING GRAVITATIONAL WAVES USING PULSARS

p. Telescopes on
Earth measure tiny
differences in the
arrival times of the
~ radio bursts caused
by the jostling.

1 Gravitational: waves from supermassive
black-hole mergers.in-distant galaxies-subtly
shift the position of-Earth:

NEW MILLISECOND PULSARS | NG 25> 3 Messuringthe

An all-skysmap'asiseeniby.the Fermi I effect on'an array of
Garnfha'ray Space Ielescope inits first year ) pulsars enhances the

chance of detecting the
gravitational waves.

(Credit: NASA/DOE/Fermi LAT Collaboration via


https://www.nature.com/news/2010/100113/full/463147a/box/1.html

Extra: Signal-to-Noise Ratio
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Extra: Targeted searches (dual harmonics)
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Glitches ol pulsars: Unexpected

jumps in the spin evolution

spin rate v

time t

== EM measured spin rate of the neutron star, i.e., what we see




Glitches of pulsars: Unexpected '
Note

jumps in the spin evolution o
Ray, Guillot et al. 2019
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coupled
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time t

== EM measured spin rate of the neutron star, i.e., what we see

==ns Superfluid spin rate inside the neutron star, i.e., what we don’t see



Glitches of pulsars: Unexpected Side

Note

jumps in the spin evolution o

Ray, Guillot et al. 2019
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== EM measured spin rate of the neutron star, i.e., what we see

==ns Superfluid spin rate inside the neutron star, i.e., what we don’t see



