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dark energy
tSZ, lensing 

➔ σ8 at z=2-3 (lensing, tSZ)

➔ growth of structure (kSZ)

galaxy evolution
tSZ, kSZ 

➔ non-thermal pressure (tSZ+kSZ) 

➔ feedback efficiency (tSZ+kSZ)

neutrino mass
lensing potential 

(TT+EB), tSZ 
➔ Σmν

reionization
sources 

➔ duration of reionization (kSZ)

➔ mean free path of photons (kSZ)

relativistic species
damping tail 
➔ Neff (TE, TT, EE)

primordial fluctuations
large scale B-modes 
➔ tensor-to-scalar ratio (BB)


damping tail

➔ primordial power on small scales (TE, TT, EE)


➔ primordial bispectrum (fNL via TTT,TTE,… + lens/kSZ)
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Gravitational waves

The imprints of gravitational waves on CMB

Inflation 
 
 
Quantum fluctuation of spacetime 
 
 
Primordial gravitational waves 
 
 
“vortex”es in the CMB polarization 
map (called “B-mode”) 
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Observations are already in remarkable agreement 
with single-field slow-roll inflation:

• super-horizon fluctuation

• adiabaticity

• gaussianity

• ns < 1 

inflation ɸ Planck

•dynamics of an homogeneous scalar field in a FLRW geometry is given by

• inflation happens when potential dominates over kinetic energy (slow-roll)

scalar field. The energy-momentum tensor for the scalar field is

T
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The field equation of motion is
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where V,� = dV

d�
. Assuming the FRW metric (1) for gµ⌫ and restricting to the case of a homogeneous

field �(t,x) ⌘ �(t), the scalar energy-momentum tensor takes the form of a perfect fluid (20) with
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The resulting equation of state
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shows that a scalar field can lead to negative pressure (w� < 0) and accelerated expansion (w� <

�1/3) if the potential energy V dominates over the kinetic energy 1

2
�̇
2. The dynamics of the

(homogeneous) scalar field and the FRW geometry is determined by
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For large values of the potential, the field experiences significant Hubble friction from the term H�̇.

6.2 Slow-Roll Inflation

The acceleration equation for a universe dominated by a homogeneous scalar field can be written as

follows
ä

a
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The so-called slow-roll parameter " may be related to the evolution of the Hubble parameter

" = � Ḣ

H2
= �d ln H

dN
, (70)

where dN = Hdt. Accelerated expansion occurs if " < 1. The de Sitter limit, p� ! �⇢�, corresponds

to " ! 0. In this case, the potential energy dominates over the kinetic energy

�̇
2 ⌧ V (�) . (71)

32

• where did V(Φ) come from ?
• why did the field start in slow-roll ?
• why is the potential so flat ?
• how do we convert the field energy 

into particules ?

Looking for Primordial Gravitational waves
… as a tracer of Inflation period
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•According to the single field slow-roll inflationary scenario, quantum vacuum 
fluctuations excite cosmological scalar and tensor perturbations

•With the definition of the tensor-to-scalar ratio “r”  
which characterizes the amplitude of GW and gives direct constraints on the 
shape of the potential
• energy scale of inflation

• inflaton field excursion

• derivative of the potential

PT (k) = At
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scalar

tensor

8 2 SCIENTIFIC POTENTIAL OF CMB MEASUREMENTS

Detecting tensor perturbations would also give us a measurement of the inflaton field excursion since

��

MPl
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. (3)

In this generic formula (known as the Lyth bound), MPl is the reduced Planck mass and Ne is the number of
e-folds probed in the observational window (in practice, Ne ' 7). This implies that the field excursion during
inflation can easily be of the order of, or even larger than the Planck mass depending on r. In fact, this leads
to a “natural” value of r, namely r ' 10�3, corresponding to a field excursion of the order of the Planck mass.
From an e↵ective field theory point of view this means that the higher order operators that are the “remnants”
of quantum gravity at the inflationary scale can become crucial and can a↵ect the shape of the inflationary
potential. This inflationary Ultra-Violet (UV) sensitivity can be turned to our advantage and used to probe
quantum gravity if one can reach the limit r ' 10�3.

Another consequence of a detection would be a measurement of the first derivative of the inflaton potential.
Indeed, the tensor-to-scalar ratio can be written as

r = 8M2
Pl

 
V�
V

!2

, (4)

and, hence, a detection of the B-polarization would allow us to infer the first derivative of the inflaton poten-
tial, V�. This is important because, today, we only have a measurement of the second derivative, V��, and no
significant constraint of the higher derivatives. The constraint on V�� is derived from the measurement of the
scalar spectral index

nS � 1 ⌘
d lnP⇣
d ln k

' �3M2
Pl

 
V�
V

!2

+ 2M2
Pl

V��
V
. (5)

Planck has shown for the first time at the 5� level that nS , 1 (a crucial prediction of inflation) and has obtained
nS ' 0.96. Further improving the precision of the determination of nS , and possibly a detection of its variation
(the so-called running index), is of key interest for constraining models of inflation. Next generation can extend
the lever arm for nS , particularly in the polarization spectrum (EE-modes). It may indeed be possible to extend
the primary E-mode spectrum to multipoles of a few thousands because of the very low level of polarized
foregrounds at high ` (see § 3). It allows a direct determination of the primary metric fluctuation spectrum of
wave-modes of about k = 0.35 h/Mpc for an ` of about 5000 (the maximum values of ` and k are proportional).

A measurement of r would also significantly impact model building and model selection outlook since
precise observations of nS and r can bring constraints on specific models of inflation. In other words, with a
detection of B-polarization, our understanding of the shape of the potential would drastically improve, opening
the possibility to learn about the physical nature of the inflaton field. Of particular interest, the minimal Higgs
inflation (HI) model introduced before predicts r ' 10�3, see Fig. 4, a target already encountered before. As
a consequence, checking observationally whether the inflaton field is the Higgs field is within reach of – and
therefore an exciting goal for – future CMB experiments.

Of course, many other models than HI can also be constrained. This is also illustrated in Fig. 4 where
the predictions of a small field model, SFI4, have been displayed [The corresponding potential is given by
V(�) = M4[1 � (�/µ)p] where µ and p are two free parameters]. In fact preliminary studies on model selection
indicate that the next experiments should be able to exclude more than 4/5 of the vanilla scenarios (Martin et al.
2014c), as opposed to 1/3 for Planck which gives an idea of the constraining power of those observational
projects. It is very important to stress that this conclusion is true if a detection of B-modes is achieved but also
in the situation where only an upper bound on r is obtained.

Finally, the next generation of experiments will allow us to significantly improve our knowledge of reheat-
ing (the phase that concludes inflation). Again, this is illustrated in Fig. 4. For a given potential and for fixed
values of the free parameters characterizing the shape of the potential, di↵erent reheating histories lead to dif-
ferent points in the (nS , r) space. Those points can be inside or outside the experimental contours thus opening
the possibility to probe the reheating phase. We have already seen that Planck has obtained model-dependent
constraints corresponding to prior-to-posterior reduction of about 40%. Preliminary studies show that an ex-
periment such as CORE could raise this number to 90% (Martin et al. 2014c). Again, this conclusion is true
even if only an upper bound on r is obtained. In any case, obtaining relevant constraints on the reheating epoch
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2.1 The early universe 7

Figure 2: Existing and expected constraints on nS and r. The orange and yellow contours show the 68% and
95% confidence regions expected from the baseline configuration of COrE+. The possibility to improve the error
bars by delensing is not included in this forecast. The fiducial model is the Starobinsky R2 model [7]. The blue and
cyan contours show the Planck 2013 constraints, while the gray contours show the WMAP 9-year constraints. The
symbols show predictions of a few other well known inflationary models. The violet, yellow, and red regions show
vacuum-dominated convex potentials (V �� > 0), convex potentials vanishing at their minimum, and concave potentials
(V �� < 0; hilltop or plateau inflation), respectively.

parity ‘E mode’ and an odd parity ‘B mode’ [9, 10]. The scalar fluctuations produce only E modes, whereas
the tensor fluctuations produce both E and B modes. Thus B mode polarization o�ers a sensitive and highly
model-independent probe of tensor fluctuations.

Detection of the long wavelength, nearly scale-invariant tensor fluctuations is considered as an observa-
tional tell-tale sign that inflation occurred at energies a trillion times higher than the ones achieved by the
Large Hadron Collider (LHC) at CERN. At such high energies we may also see hints of quantum gravity.
Consequently, the main science goal of COrE+ will give us a powerful clue concerning how the Universe
began and the precise character of the fundamental laws of nature (i.e., how gravity and the other forces in
nature are unified).

Inflation is thought to be powered by a single energy component called ‘inflaton’. The precise physical
nature of the inflaton is unknown but it is often assumed to be a scalar field, just like the Higgs field recently
discovered by the LHC [11, 12]. The simplest models of inflation are based on a single scalar field � with
a potential energy density V (�). We can easily generalize to models involving more fields. The potential
energy drives the scale factor of the Universe to evolve as a(t) � exp(Ht) where H2 � (8�G/3)V (�). As a
result, the Universe is quickly driven to a spatially flat, Euclidean geometry, and any memory of the initial
state of the observable Universe is e�ectively erased, since a patch of space that undergoes inflation becomes
exponentially stretched and smoothed.

According to inflation, the large patch of the Universe that we live in originated from a tiny region in
space that was stretched to a large size by inflation. The original region was so tiny that quantum mechanics
played an important role. Namely, the energy density stored in the inflaton field � varied from place to
place according to the laws of quantum mechanics. This scalar quantum fluctuation is the seed for all the
structures that we see in the Universe today [6]. This is a remarkable prediction of inflation, which agrees
with all the observational data we have collected so far [8]. The only missing piece is the existence of tensor
quantum fluctuations, which would appear as long-wavelength gravitational waves propagating through our
Universe [7]. We wish to detect this using the B mode polarization of CMB.

An important prediction of inflation is that the scalar and tensor fluctuations are nearly, but not exactly,
scale-invariant—namely that the variance of fluctuations depends only weakly on the spatial length scale.
More specifically, the variance of fluctuations decreases slowly toward smaller length scales [6]. This behavior
in the scalar fluctuations has now been convincingly detected by WMAP [13, 14] and Planck [8]. While

7

Figure 4: Existing and expected constraints on nS and r. The orange and yellow contours show the 68% and 95% confi-
dence regions expected from the baseline configuration of a typical next generation medium size CMB space experiment
(specifically CORE+, as was proposed at ESA for the M4 call). The possibility to improve the error bars by delensing is
not included in this forecast. The fiducial model is the Higgs inflation model (or equivalently Starobinsky R + R2 model,
see text). The blue and cyan contours show the Planck 2013 constraints, while the grey contours show the WMAP 9-year
constraints. The symbols show predictions of a few other well known inflationary models. The purple, yellow, and red
regions show vacuum-dominated convex potentials (V�� > 0), convex potentials vanishing at their minimum, and concave
potentials (V�� < 0; hilltop or plateau inflation), respectively. Taken from Martin et al. (2014b).

of a quantum gravitational wave, clearly a breakthrough for quantum gravity (moreover, the amplitude of these
primordial gravitational waves cannot be seen by experiments such as LIGO or VIRGO, even by eLISA). In
fact, inflation is probably the only case in physics where an e↵ect based on general relativity and quantum me-
chanics leads to predictions that, given our present day technological capabilities, can be tested experimentally.
As a consequence, if any experimental signatures of quantum gravity is ever obtained, it is very likely that this
will be through the study of inflation and its cosmological predictions. Probing B-polarization precisely exem-
plifies the idea of using inflation as a tool towards a better understanding of the theoretical and observational
aspects of quantum gravity. In other words, our ability to see through the inflationary window has turned the
early universe into a laboratory for ultra-high energy physics at energies entirely inaccessible to conventional
experimentation.

Another crucial aspect related to a detection of the B-modes is that this would lead to a determination of the
energy scale of inflation which is, as recalled above, still presently unknown. More precisely the energy scale
of inflation is

V1/4(�) ' 1016 GeV
✓ r
0.01

◆1/4
, (2)

where V(�) is the potential of the inflaton field �. This determination of the energy scale is the primary goal
of any CMB missions. Determining the value r would undoubtedly be a major discovery, re-enforcing the
inflationary paradigm and it would set the stage for any subsequent theoretical attempts to build global models
of inflation. We would know how far from the Planck or string scale inflation proceeded.
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Future probes of the CMB B-Modes
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The challenge of detecting the CMB B-Modes
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Future probes of the CMB B-Modes
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Future probes of the CMB B-Modes
Improving sensitivity of CMB experiments

Josquin Errard (APC/CNRS), colloquium@CEA, October 4th 2021

improving the sensitivity of CMB experiments: number of detectors

credits: Nils Halverson
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Future probes of the CMB B-Modes
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improving the sensitivity of CMB experiments: number of detectorsImproving sensitivity of CMB experiments
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Future probes of the CMB B-Modes
Global Panorama of CMB experiments
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SO / CMB-S4
Simons Observatory

Simons Observatory Site
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SO / CMB-S4

see 2103.02747

Large Aperture Telescopes
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SO / CMB-S4
4m

3 tubes

Small Aperture Telescopes

20GHz - 270GHz

Sensitivity:
~ 1 µK.arcmin
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SO / CMB-S4

Ultra-deep survey: 
observe ~3% of the sky 
with 150,000 detectors 
in SATs & a de-lensing 
LAT with 120,000 
detectors. 

Deep-wide survey: 
Two LATs observing 
~60% of the sky 
with 240,000 
detectors. 

30/40 GHz 
85/145 GHz 
95/155 GHz 
220/270 GHz 

20 GHz 
27/39 GHz 
93/145 GHz 
225/278 GHz

27/39 GHz 
93/145 GHz 
225/278 GHz

27/39 GHz 
93/145 GHz 
225/278 GHz

60,000 detectors

500,000 detectors

27/39GHz 
93/145GHz 
225/280GHz

Funded by 
Simons Foundation

Astro2020 US 
Decadal Survey of 

Astronomy:

Joint DOE/NSF project

CMB-S4 = Priority #2
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LiteBIRD

L-Class JAXA Mission, selected in 2019

Launch 2029

L2 orbit
All-sky Survey during 3 years

Large frequency coverage
15 bands 34 - 448 GHz

Sensitivity in Polarisation:   2.2 uK.arcmin

70.5’ - 23.7’

Resolution:
   LFT                  MFT                   HFT

37.8’ - 28’ 28.6’ - 17.9’

Hazumi et al SPIE2020 11443-249 

Main Specifications

Continuously rotating HWP

4508 TES detectors cooled down at 100mK

LFT (5K)

High Gain (HG) 
antenna (X-band)

MHFT (5K)
V-grooves

(radiative cooler)

SVM/BUS

LiteBIRD

2021/3/26 LiteBIRD: Polarimetry of CMB 7

JAXA
H3

LFT (Low frequency telescope) 34 – 161 GHz : Synchrotron + CMB

MHFT (Middle and High frequency telescopes) 89 – 448 GHz : CMB + Dust

4.5 m

TES focal plane 
0.1K

(not seen)

Mission type JAXA strategic L-class mission
Launch year 2029
Observation type All-sky CMB surveys
Observing 
frequencies 34 - 448 GHz (15 frequency bands)

Sensitivity 2.2 μK-arcmin (3 years)

Orbit Sun Earth L2 Lissajous orbit

Angular 
resolution 0.5 deg at 140 GHz (FWHM)

Instruments

- Superconducting detector (4300 TES) 
arrays
- Crossed-Dragone antenna (LFT) + two 
refractive telescopes (MFT and HFT)
- continuously-rotating half-wave plate (HWP)
- 0.1K cooling chain (ST/JT/ADR)

LiteBIRD Mission
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LiteBIRD

Mirrors 5K

HWP <18K

Mechanical structure 
5K

20°x10º 
FoV

Spin axis

Full instruments and optics at 5K

Focal planes at 100mK

LFT

HFT

MFT

LF-FPU 
(0.1K)

Systematics Mitigation
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LiteBIRD
Systematics Mitigation

Continuously Rotating Half-Wave Plates

First prototype in the world 
developed at IPMU (Tokyo)

Magnetic sustentation

Parallel development in Italy
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LiteBIRD

15 bands 
from 34GHz 
to 448GHz

+4600 
detectors

9 bands LFT
5 bands x 2 MHFT

+ 
4 bands 

overlapping 

C
O
J1

0

C
O
J2

1

C
O
J3

2

C
O
J4

3

du
st

synchrotron

CMB

HFT

MFT
HFT

LFT

Foregrounds Mitigation

Possible only from Space !
Because of atmospheric 

absorption from the ground
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LiteBIRD

About 180 researchers from all over the world�

US / CA
30

JPN
70

An international collaboration

EU
150

About 300 researchers from Japan, Europe & North America

Europe

Japan

US
Canada

An international collaboration
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LiteBIRD
LiteBIRD-FRANCE

APC

IAS

IJCLab

IAP

CEA-SBT

IRAP

LPSC

I. Neel

Paris

Grenoble

Toulouse

IPAG

ENS

CEA-DAp

 

 

 

IN2P3

INSU

INP

 

 

CEA

ENS35 chercheurs 
17 ingénieurs 

Marseille

LAM
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LiteBIRD
LiteBIRD-FRANCE

APC

IAS

IJCLab

IAP

CEA-SBT

IRAP

LPSC

I. Neel

Paris

Grenoble

Toulouse

IPAG

ENS

CEA-DAp

 

 

 

IN2P3

INSU

INP

 

 

CEA

ENS35 chercheurs 
17 ingénieurs 

Marseille

LAM

CNES Phase-A2 
since 2020 with 
leadership on 
MFT & HFT
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Some Forecasts as a Conclusion / Perspectives
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In case of detection

In case of non-detection
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