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TRANSIENT SKY
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* Very energetic and violent phenomena
releasing huge amount of energy in
various forms (EM, neutrinos, GW, ...)

* Imply the birth, destruction or feeding of
compact objects (stellar mass BHSs,
supermassive BHs, NS & WD)

* Deep feedback impacts on the source
surroundings on multiple scales

= Role of COs in the structuration of matter in the Universe
* Demography of COs over cosmological timescales

e Growth of supermassive BHs / co-evolution with host galaxy

* Reprocessing of baryons / r-process nucleosynthesis

See talks during the « source populations » session this afternoon




MULTI-MESSENGER
* Up to very recently, only use of light across the entire electromagnetic (EM) spectrum to
study the Universe contents

 The advent of sensitive neutrinos (IceCube, SK, KM3Net) & GW (LVK, LISA, ET/CE)
detectors opens a new window on the Universe o
The Gravitational Wave Spectrum

Quantum fluctuations in early universe

Binary Supermassive Black
Holes in galactic nuclei

§ Compact Binaries in our
S Galaxy & beyond
o
= MM astronomy has the power to deeply < = .
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SN 1987A: FIRST MM EVENT
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e Detection of electronic neutrinos by several experiments

[Japon (11), US (8) and Russia (5)] a few hours prior to the
SN observation in optical.

= First evidence for neutronisation of matter following the
gravitational core collapse of a massive (> 10 M_ ) star!!

* 24 neutrinos detected from the SN over 10°° emitted
neutrinos based on various models (very low cross section)!
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http://www.annualreviews.org/doi/10.1146/annurev.aa.27.090189.003213
http://www.sciencedirect.com/science/article/pii/0370269388916516
https://journals.aps.org/prl/pdf/10.1103/PhysRevLett.58.1490
https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.58.1494

MM PROSPECTS FROM SNe

Galactic or within MC core-collapse SNe: ideal targets for MM studies (GW + neutrinos + EM)

Understand the SN hydrodynamical evolution from the onset of the collapse to the CO

formation (Arimoto et al. 2021, arXiv:2104.02445) Abbott+16. PRD arXiv-1605.01785
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GW170817/GRB170817A

LIGO-Virgo

Reported 27 minutes after detection

INTEGRAL

Reported 66 minutes
after detection
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Gamma rays, 100 keV and higher
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GRB 170817A

First detected and only EM+GW
event!

BNS merger followed 1.7 s later by a
short GRB

Host galaxy located at 40 Mpc

Nature of the post-merger CO

unknown (mass < 2.8 M
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GW170817/GRB170817A

The most followed astrophysical object ever!

Very good sampling of EM emission accross the EM
spectrum

Generate a lot of scientific activities leading to really a
lot of papers!




Unabsorbed Flux (erg 5! em™®)

GW170817/GRB170817A

« Off-axis relativistic structured jet (~20° ; e.g. Ghirlanda+19)
« R-process (rapid neutron capture) nucleosynthesis from ~0.05 M_ _ ejecta including lanthanide elements

Takahashi & loka 2020
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GW170817/GRB170817A

« GW from binaries = standard sirens (Schultz
1986) to measure in an independent way the

cosmic expansion history

e Direct measure of luminosity distance with GW
signals to be compared with redshift measure

from EM (Abbott et al. 2017, Nature)
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Fractional GW/EM speed difference (Abbott+17, ApJ):

3% 108 < = < +7 x 10716

VEM

Test of the equivalence principle using Shapiro effect
(Abbott+17, ApJ)

Modelling of the kilonova puts constraints on the r-
process efficiency, the system inclination i & on the
post-merger object nature (Arimoto et al. 2021).

Modelling of AG also provides clues on i => improve
GW luminosity  distance estimates (e.g.
Ghirlanda+19, Hajela+20)




O3 RUN

With the O3 run (2019-2020), a total of 90 merger
events (Abbott+21)

01 =3, 02 =8, O3a = 44, O3b = 35, Total =90

o
o
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Mostly BBH mergers
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1 confirmed BNS merger (GW190425) at a distance - O1 02

of 89 — 228 Mpc — No EM counterpart
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FUTURE PROSPECTS

« O4 run in ~2023 — distance horizon larger E?(')E'OS merger estimates from O2 run
= More BNS events detected at higher distances Abbott+19 o]

100 |

= However, off-axis GRBs more difficult to catch
promptly at HE

Expected number (yr'1)
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SMBH GROWTH PROBLEM

] _ Mezcua 2017
SMBH (10°~'® M__) in the core of most massive
galaxies 12 P e
. . . . S gn in prnl:ogalaxy = P
SMBH occupation fraction in less massive 1o ™ i g -
galaxies (< 10° M, ) & mass distribution of MBH | U

e of
protogalaxies

in galaxies in the early Universe still unknown

Important for cosmological simulations (i.e. BH
seeding of galaxies in the early Universe) i

Growth of SMBH is one of fundamental open | ienoverimBe
guestions of modern astrophysics to understand A Sy 1
the form_atlon of large structures, bgryon S T I T T T T T T I T
reprocessing, the galaxy formation & evolution M (Mo)

2 leading scenarios : mergers of lighter seeds
(IMBHs with masses from ~10% to ~10° M ) &

intense episodes of (super-Eddington) accretion 12




From EMRI/IMRI to TDE

MBH unlikely to live alone in their host — likely to
have some stars graviting around them

Example of SgrA* with S2 and possibility to find
stars in tight orbits around our ~4 x 10° M. hole

(Pfahl & Loeb 2004; Liu et al. 2012).

S

IMBH possibly hosted in dense star clusters =
formation of eccentric and unstable binaries with

central hole (MacLeod+16)

See also Arcodia+21 about quasi-periodic
emission in X-rays maybe associated with

E/IMRI

log M [Mg yr 1]

See talks of N. Webb & M. Toscani
(MacLeod+16)
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orbital period inyr X* M,

ESO 243-49 HLX-1

One of the strongest IMBH candidates — M ~ a few 10* M_ _ (Farrell+09, Godet+12, Webb+12, incl. D. Barret)

Located at 95 Mpc — reach at peak 102 erg/s in X-rays

Hosted in a stellar cluster or the stripped core of a dwari

galaxy (Farrell+12) ;
Failed TDE: a WD-type donor orbiting an IMBH
= unstable system = donor ejected at some point 3
(Godet+14) S z
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SMBHB MERGERS

 The ultimate beasts!

* To understand growth of SMBH
synergy between LISA (mHz -
Hz) and Pulsar Timing Arrays
(nHz range)

Burke-Spolaor+19
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SMBHB MERGERS

The physical processes leading to the formation and the evolution of the SMBHB are still
poorly known (in particular from ~10 pc down to ~0.1 pc scales, after which GW emission starts to be

the dominant process to further harden the orbit).

How to identify SMBHB inspiral, merger and post-merger EM emission?

SMBHB formed in galaxy mergers showing distinctive observational EM features ...

Stellar Core

Galaxy Merger Merger Binary_ Formation Continuous GWs
Lots of uncertainties i Q) e
on EM/GW signatures NGCs331 N " S
because  multi-scale 4 QA o
astrophysical problem Dl Dpmlem sesms I
massive objects to SMBHs form a dominate binary inspiral? disk may track shrinking orbit.

Coalescence,
Memory & Recoil

Post-coalescence system
may experience
gravitational recoil.

central positions binary. A A\ A

Ol - 0.0001 pe
separation :
The Lifecycle . é ﬂ @
. = il
of Binary = nv,\vnvnnﬂﬁ ﬂunw
Supermassive = : UUW
Black Holes Fdfaion ~3 days . BURST!
duration
LISA  PTA LISA




SMBHB MERGERS

* In the inspiral phase

Possible periodicities in the light curve

Double peaked emission line profiles

Shocks when streams hit the edges of mini-discs

EM emission depends on system inclination

D’Ascoli+18

Circum-nuclear disk

mini-disks

stream

-60 -40 =20 0 20

40 60

E B &
Log (optical depth)

T
o
(9}

-0.3

-0.6

-1.0

Armitage & Natarajan 02; MacFadyen & Milosavljevic 08; Bogdanovic+08; Cuadra+09; Sesana+12; Roedig+12; Noble+12;

D’Ascoli+19
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SMBHB MERGERS

* In the post-merger phase

* Gas plunging in the cavity left by the binary SMBH
over viscous timescales

» Effect of recoll

« Jets colliding surrounding gas = forward shock iR SRS it
afterglow over the EM spectrum ? | : | -
* Delay of the EM emission by how much (days to A
years) ?7? :
(c) 4.6 Mg hrs (d) 6.8 Mg hrs

Armitage & Natarajan 02; Milosavljevi¢ & Phinney 05; Schnittman & Krolik 08; KhanPaschalidis+18, Yuan+21,

18




SMBHB MERGERS

* EM detection (for instance with Athena) will also crucially depend on localization
accuracy that improves with SNR

L = Lggq; Ny =10%22cm~2; [0.5-2] keV
4.5 = \

L=0.1Lgqq; Ny =10%cm~2; [0.5-2] keV

@ \ e - 10
LISA error o \'\ (a) B 4.0 .I - (c)
region size > Athena/WFI 35 : \ 35
. / exposure
35 X time " 3.5 30
3.0 ’ 25 & 3.0 25'_|
= L
% 2.5 20E < 2.5 20&
3 = 2.0 g
& 20 1568 A & 15 5
15 " 1.5 10
1.0
1.0
5
=1
0.5 DS .
0:0 p : & 3 G g 4 5 6 7 B 9
Log Total Mass[Mo] Log Total Mass[Mg ]

Predictions of LISA/Athena-WFI synergy — McGee+20
Nb of joint LISA/Athena detections over 4 yrs ~ 0.1 to 10 depending on the EM luminosity

19




SMBHB MERGERS

* Post-merger jet induced afterglow emission — Yuan+21

vF, [Jy GHz ]
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DEVELOPING MM LANDSCAPE

7 AR

Vera Rubin Obs. i ] A
Wil Neutrino facilities

ji (KM3Net, DUNE, Hyper-
B Kamiokande)

Hardware/software contribution /
Instr./science responsability

D Scientific implication

L ‘ ‘ 7 ) i N . -, . : : - ’ o * p q .

= = _Not yet confirmed project = 25, \ & ~3rd ggm%?ﬁ@@{

B = = with IRAP leading role ; : TEFSt?'“E e,\I sco)peéog,o
-~ | -Cosmic Explorer) >.20

LISA
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OBSERVING STRATEGY

Detectability

!

What you may expect

Depends on observational
constraints, theoretical and
simulation predictions)

Important caveats in some
cases

!

MM detection ~ =)

Depends on the available
instrumentation and its
sensitivity,  strategy  of
observations, coordination
when possible, etc.

[ Jele Put constraintsh

)5 —_/l' models

Go back to look
in recorded
data /

MM follow-up

Need way to dissiminate information and to track
going on (Transient Name Server,

Identification ¥7 I

—

Infer the nature of the detected events
either from EM data alone and/or MM data

Need data to be put in proper & standard
units to make most of it

Need to be quick & reliable

Aelection of

events to follow

GCN Viewer)

Need worldwide coordination (e.g. GROWTH, )
GRANDMA, ENGRAVE) o
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https://www.wis-tns.org/
https://heasarc.gsfc.nasa.gov/wsgi-scripts/tach/gcn_v2/tach.wsgi/

OBSERVING STRATEGY

* nIR/optical robotic telescopes networks
spread around the Earth (e.g. Tarot/Zadko &
Colibri working with SVOM)

* Cover several 10s of sg. deg in one go

* Tilling strategy to probe GW error regions in
optical & X-rays (Swift/XRT, SVOM/MXT)
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OBSERVING STRATEGY

Current HE instrumentation only cover a small

fraction of the sky (~16 % with Swift-BAT, ~10 % with
SVOM-ECLAIRS)

Need to develop an all-sky HE instrumentation with
sufficient senstivity to detect rare events like
GRB170718Ain the local Universe

30cm
ﬁmugn{)

Configuration avec 10 détecteurs na
Réponse d'un barreau 17.5
15.0
125
100

75

5.0

100 200

Several projects of constellation of LEO nano- m,usnn
satellites embarking a few 100s cm? effective area

detectors on each satellite (e.g. Camelot, Blackcat,
BurstCube)

Sky-map of Chi2 for GRB F180703949, Case 1

+ ~ 3UTransat error box with 90% confidence
LV Error box

« Common error box

® Real position of the GRB

® Location determined by the program

\/ error regio
Only few demonstrators already launched (GECAM =

2 x 6U (China) / GRBAIpha 1U, demonstrator for Camelot)
—1U=10x 10 x 10 cm3

3U Transient SATellite project (CNES Phase 0)
from IRAP — 3 sat. demonstrator // detection & o

localization done on-ground < 2-3 h after on-board o b TR
detection // launch target for run O5 (2025) ('\‘
L]

Equatorial

0.43875 Chiz 175.644

If interested, please contact : O. Godet ) 10 satellites in SSO orbits 24

3U TRANSAT



SOURCE CATALOGS & IDENTIFICATION
e Several on-going activities in GAHEC regarding source catalogs and identification:

SVOM/Trigger offline (B. Arcier, M. Llamas / L. Bouchet) to extend on-board capability

« Quick » XMM on-ground trigger (E. Quintin) to search for all types of transients

Pipeline to search for objects showing rapid variability (e.g. QPE — M. Gupta) using XMM data
Development of source classification scheme for X-ray sources (Tranin, Godet, Webb+21) &
Classification of X-ray Sources for Novices website for citizen science (H. Tranin)

= Allow synergy with other MM facilities (for follow-up/ for source identification)

* LSST-FINK broker (Moller+21, incl. O. Godet & N. Webb) — Vera Rubin Obs./LSST is a TS game changer
with millions of alerts per night
* FINK broker (selected officially in mid-2021): Multi-science transient broker
* Include SVOM module // Define metrics to identify desired types of transients // work in synergy with
offline trigger (M. LIlamas, M. Yassine / O. Godet, E. Quintin / N. Webb)

 Build of catalogs (Fermi, XMM)
* 4XMM-DR11 (> 6 10° X-ray sources — Webb+20)
* New features to be added (multi-wavelength & MM counterparts, upper limits, source identification,
lightcurves) — H2020 SPACE project XMM2Athena (N. Webb) // Preparation of Athena/X-IFU ground
segment

25



http://xmm-ssc.irap.omp.eu/claxson/index_fr.php
http://xmm-ssc.irap.omp.eu/xmm2athena/fr/

WRAP-UP

MM & TS astronomy will likely transform our understanding of the formation/evolution of
the Universe contents in forthcoming years.

Need to assess carefully how MM data could be used to do so

Need worldwide & local science coordination between various scientific communties for
MM follow-ups to be successful

Need to brigde some instrumentation gaps at HE to have all-sky capability = 3U Transat
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