

Replicating ZTF data : where are we ?

ZTF France meeting, 8-9th december 2021

-Mélissa Amenouche (speaker) -Philippe Rosnet (LPC)

-Mat Smith (IP2I)

UNIVERSITÉ Clermont Auvergné

Bulk flows with SNe Ia

G. J. Mathews et al. (2016)

Reference	Obj. Type	No. Obj.	Redshift ^a	Distance ^a	Vbf	l	b
				$(h^{-1} \text{ Mpc})$	$({\rm km \ s^{-1}})$	(degree)	(degree)
Kashlinsky et al. (2010)	kSZ	516	< 0.12	<345	934 ± 352	282 ± 34	22 ± 20
		547	< 0.16	<430	1230 ± 331	292 ± 21	27 ± 15
		694	< 0.20	<540	1042 ± 295	284 ± 24	30 ± 16
		838	<0.25	<640	1005 ± 267	296 ± 29	39 ± 15
Dai et al. (2011)	SN Ia	132	< 0.05	<145	188 ± 120	290 ± 39	20 ± 32
		425	>0.05	>145			
Weyant et al. (2011)	SN Ia	112	< 0.028	<85	538 ± 86	250 ± 100	36 ± 11
Ma et al. (2011)	galaxies and SN Ia	4536	< 0.011	<33	340 ± 130	285 ± 23	9 ± 19
Colin et al. (2011)	SN Ia	142	< 0.06	<175	260 ± 130	298 ± 40	8 ± 40
Turnbull et al. (2012)	SN Ia	245	< 0.05	<145	245 ± 76	319 ± 18	7 ± 14
Feindt et al. (2013)	SN Ia	128	0.015-0.035	45-108	243 ± 88	298 ± 25	15 ± 20
		36	0.035-0.045	108-140	452 ± 314	302 ± 48	-12 ± 26
		38	0.045-0.060	140-188	650 ± 398	359 ± 32	14 ± 27
		77	0.060-0.100	188-322	105 ± 401	285 ± 234	-23 ± 112
Ma & Scott (2013)	galaxies	2404	< 0.026	<80	280 ± 8	280 ± 8	5.1±6
Rathaus et al. (2013)	SN Ia	200	< 0.2	<550	260	295	5
Appleby et al. (2015)	SN Ia	187	0.015-0.045	45-130		276 ± 29	20 ± 12
Planck Collaboration et al. (2014)	kSZ	95	0.01-0.03	30-90	<700		•••
		1743	< 0.5	< 2000	<254		

No consensus on the detection

Hubble diagram

We need simulations

to investigate ZTF imprint

- Biases
- Sky coverage and survey cadence
- Data quality

4

Simsurvey (Feindt et al. 2019)

github.com/ZwickyTransientFacility/simsurvey/

ZTF transient light-curves simulator based on an observing strategy

Observing strategy

Simulating ZTF DR2

Targeted way to use simsurvey

ZTF18ablqlzp, z= 0.0413

Observing strategy : focusing on objects (fixed coordinates)

transient : use the salt2 parameters of the object

Focus on the errors

ZTF18ablqlzp, z= 0.0413

7

ZTF18aakoylt z=0.0876

Good news : the simulations replicate the data

Now :

- How well ZTF is doing for **any** SN ?
- Is it biased ?

What if we observed in a specific patch of the sky than in another ?

Free simulations

Free simulations

Preliminary

Conclusion

- ZTF SNe constitute a unique low-z sample for measuring bulk flows
- Bulk flows measurements are important to test LCDM
- The simulations match the data for individual objects

Ongoing work

- Targeted simulations over all DR2
- Fit the LC of the confirmed objects then compare input output parameters (and do in function of ra dec)
- Input realistic population in the simulations