SVOM and COLIBRI synergy to characterize dust content of GRB host galaxies

V. Buat, D. Turpin, D. Corre, N. Ghesquiers

outline

- Introduction
- Astrophysical background: extinction curves and dust properties
- Extinction curves along the l.o.s of GRBs
- What can we do with photometric measurements? COLIBRI data
- Combination of UV-optical and X-ray data
- Further step: Extinction and attenuation curves of GRB hosts

GRB as probes of galaxies interiors

Many advantages:

- Bright enough to reach very high redshifts
- Occur in dense media, and with sightlines representative of star forming regions
- Very simple and featureless intrinsic spectrum

Some issues:

- Bright but fades rapidly
- Probes typical regions but the GRB can influence their (dust) content

outline

- Introduction
- Astrophysical background: extinction curves and dust properties
- Extinction curves along the l.o.s of GRBs
- What can we do with photometric measurements? COLIBRI data
- Combination of UV-optical and X-ray data
- Further step: Extinction and attenuation curves of GRB hosts

Extinction curves in the local group: taken as a reference, the only ones well measured along the l.o.s of individual stars

Modelling dust evolution is very complexx

3 main steps

3 main steps

outline

- Introduction
- Astrophysical background: extinction curves and dust properties
- Extinction curves along the l.o.s of GRBs
- What can we do with photometric measurements? COLIBRI data
- Combination of UV-optical and X-ray data
- Further step: Extinction and attenuation curves of GRB hosts

Extinction curves already measured along the line of sight of GRBs afterglows: Mostly steep (SMC like or steeper), a few curves with UV bumps

Perley+10, see also Jang et al. 2011, but see Bolmer+18

Hirashita & Murga 2020 : young age SNe+small grains production, dense medium & short burst

But Nozawa+15: old ages and coagulation

The UV rest-frame range is crucial to discriminate between different extinction curves

SVOM meeting, OHP, nov. 2021j

The afterglow has to be observed less than 3 hours after the burst to get a large variety of extinction curves

outline

- Introduction
- Astrophysical background: extinction curves and dust properties
- Extinction curves along the l.o.s of GRBs
- What can we do with photometric measurements? COLIBRI data Nathanael Ghesquiers internship (may-sept. 2021)
- Combination of UV-optical and X-ray data
- Further step: Extinction and attenuation curves of GRB hosts

N. Ghesquiers internship (May-sept 21)

- Creation of a GRB catalogue & afterglow emission
 ➤MW, SMC (LMC) extinction curves parameters:
 - $► 2.0 \le z \le 7.0$
 - $> 0.25 \le A_V \le 2.0$
 - Single intrinsic power-law spectrum
- 2) Simulated observations with COLIBRI (observation strategy as in Corre 18)
- 3) Estimation of parameters
 ➤ A_v ,redshift (as in Corre 18)

Identification of a MW Extinction curve

The UV bump will be covered by COLIBRI (DDRAGO_B & R and CAGIRE)

The UV bump will be covered by COLIBRI (DDRAGO_B & R and CAGIRE)

- UV bump for z>~1.5
- Far-UV continuum z> ~2.5

SVOM meeting, OHP, nov. 2021j

With a simulated MW extinction curve: redshift, Av, and the extinction curve (MW or SMC) well recovered up to high z for moderate extinctions

MW law associated		Av 0,25		Av 0,50		Av 0,75		Av 1,0		Av 1,25		Av 1,50		Av 1,75		Av 2,0	
res	ults	Zmoy	Av moy														
	2,0	1,967 +/- 0,003	0,217 +/- 0,004	1,979 +/- 0,002	0,463 +/- 0,002	1,982 +/- 0,001	0,707 +/- 0,006	1,985 +/- 0,003	0,947 +/- 0,003	1,986 +/- 0,002	1,143 +/- 0,009	2,026 +/- 0,007	1,342 +/- 0,007	2,043 +/- 0,007	1,427 +/- 0,007	5,741 +/- 0,035	0,450 +/- 0,073
	2,25	2,266 +/- 0,006	0,216 +/- 0,003	2,252 +/- 0,004	0,460 +/- 0,003	2,251 +/- 0,002	0,702 +/- 0,005	2,258 +/- 0,003	0,916 +/- 0,008	2,267 +/- 0,002	1,382 +/- 0,012	2,185 +/- 0,008	1,296 +/- 0,004	2,059 +/- 0,013	1,021 +/- 0,008	7,452 +/- 0,551	0,020 +/- 0,021
	2,5	2,522 +/- 0,003	0,237 +/- 0,003	2,515 +/- 0,002	0,489 +/- 0,003	2,514 +/- 0,002	0,732 +/- 0,003	2,518 +/- 0,003	0,972 +/- 0,010	2,387 +/- 0,004	1,258 +/- 0,017	2,417 +/- 0,010	0,876 +/- 0,007	7,680 +/- 0,434	0,004 +/- 0,003	7,301 +/- 0,386	0,039 +/- 0,032
	2,75	2,766 +/- 0,004	0,246 +/- 0,004	2,760 +/- 0,002	0,502 +/- 0,003	2,767 +/- 0,003	0,760 +/- 0,006	2,694 +/- 0,004	0,775 +/- 0,007	2,563 +/- 0,007	0,771 +/- 0,001	7,369 +/- 0,349	0,005 +/- 0,003	7,659 +/- 0,481	0,012 +/- 0,010		
	3,0	3,009 +/- 0,002	0,253 +/- 0,004	3,040 +/- 0,003	0,533 +/- 0,003	3,028 +/- 0,005	0,774 +/- 0,007	3,012 +/- 0,004	0,624 +/- 0,007	2,580 +/- 0,026	0,956 +/- 0,008	7,357 +/- 0,457	0,011 +/- 0,012				
	3,25	3,264 +/- 0,004	0,255 +/- 0,002	3,281 +/- 0,004	0,562 +/- 0,005	3,280 +/- 0,004	0,813 +/- 0,011	3,273 +/- 0,011	0,371 +/- 0,012	7,410 +/- 0,552	0,003 +/- 0,002	7,119 +/- 0,386	0,020 +/- 0,014				
	3,5	3,515 +/- 0,003	0,273 +/- 0,002	3,498 +/- 0,001	0,627 +/- 0,008	3,447 +/- 0,006	0,552 +/- 0,016	1,007 +/- 0,006	1,751 +/- 0,017	7,267 +/- 0,424	0,007 +/- 0,007						
	3,75	3,744 +/- 0,001	0,288 +/- 0,006	3,724 +/- 0,004	0,623 +/- 0,007	3,751 +/- 0,006	0,598 +/- 0,024	5,881 +/- 0,002	0,534 +/- 0,012								
	4,0	3,989 +/- 0,002	0,315 +/- 0,002	4,003 +/- 0,002	0,407 +/- 0,014	1,273 +/- 0,013	1,474 +/- 0,009	5,794 +/- 0,005	0,421 +/- 0,020								
ft z	4,25	4,233 +/- 0,003	0,324 +/- 0,010	4,161 +/- 0,004	0,644 +/- 0,015	1,388 +/- 0,011	1,497 +/- 0,007	5,589 +/- 0,060	0,085 +/- 0,054								
shi	4,5	4,404 +/- 0,001	0,332 +/- 0,005	4,813 +/- 0,037	0,000 +/- 0,000	5,140 +/- 0,002	0,016 +/- 0,009	5,673 +/- 0,064	0,069 +/- 0,041								
De l	4,75	4,657 +/- 0,006	0,278 +/- 0,005	4,975 +/- 0,004	0,001 +/- 0,000	5,631 +/- 0,062	0,016 +/- 0,007	5,602 +/- 0,041	0,183 +/- 0,137	,							
	5,0	5,058 +/- 0,002	0,201 +/- 0,010	5,219 +/- 0,005	0,001 +/- 0,001	5,790 +/- 0,009	0,264 +/- 0,011										
	5,25	5,307 +/- 0,000	0,130 +/- 0,026	5,964 +/- 0,001	0,176 +/- 0,004	5,877 +/- 0,002	0,243 +/- 0,011										
	5,5	5,693 +/- 0,011	0,034 +/- 0,006	5,963 +/- 0,002	0,195 +/- 0,006	5,955 +/- 0,009	0,271 +/- 0,009										
	5,75	5,798 +/- 0,002	0,043 +/- 0,005	6,045 +/- 0,002	0,187 +/- 0,006	6,098 +/- 0,027	0,261 +/- 0,024										
	6,0	6,043 +/- 0,005	0,086 +/- 0,004	6,126 +/- 0,002	0,194 +/- 0,005	7,226 +/- 0,462	0,010 +/- 0,007										
	6,25	6,118 +/- 0,007	0,142 +/- 0,005	7,320 +/- 0,499	0,001 +/- 0,002	6,908 +/- 0,219	0,030 +/- 0,024										
	6,5	6,934 +/- 0,257	0,050 +/- 0,050	7,528 +/- 0,552	0,001 +/- 0,001	7,197 +/- 0,564	0,052 +/- 0,052										
	6,75	7,421 +/- 0,524	0,023 +/- 0,018	7,288 +/- 0,428	0,001 +/- 0,002												
	7,0	7,459 +/- 0,508	0,030 +/- 0,034	7,335 +/- 0,567	0,001 +/- 0,001												

With a simulated MW extinction curve: redshift, Av, and the extinction curve (MW or SMC) recovered up to high z for moderate extinctions

Photometric data only: it is difficult to measure the slope of the extinction law

- The bump can be detected in a photometric band (Kruehler+08, Nathanael 's results)
- More difficult for the slope of the extinction law (LMC, SMC, MW) (Japelj+15, Nathanael's results)

	SM	AC	LN	AC	M	Best model		
GRB	$\left(\chi^2/\text{d.o.f.}\right)_{\text{phot}}$	$\left(\chi^2/d.o.f.\right)_{spec}$	$\left(\chi^2/\text{d.o.f.}\right)_{\text{phot}}$	$\left(\chi^2/\text{d.o.f.}\right)_{\text{spec}}$	$\left(\chi^2/\text{d.o.f.}\right)_{\text{phot}}$	$\left(\chi^2/d.o.f.\right)_{spec}$	Phot	Spec
100219A	3.8/10	41.7/30	4.3/10	34.8/30	6.9/10	44.2/30	MW	LMC
100418A	11.2/12	20.8/23	10.7/12	20.2/23	11.1/12	20.0/23	Any	SMC^{\dagger}
100814A	48.1/33	70.8/66	47.8/33	71.0/66	47.9/33	257/67	Any	SMC^{\dagger}
100901A	15.4/26	44.2/41	14.8/26	160/47	14.6/26	355/47	Any	SMC
120119A	59.7/47	194.1/81	57.5/47	106.0/81	79.5/47	1023/81	SMC/LMC	LMC
120815A	21.3/21	26.0/47	22.2/21	122.9/47	20.0/22	353.1/27	Any	SMC
130427A	62.6/64	129.3/147	62.5/64	130.0/147	62.5/64	123.9/147	Any	SMC [†]
130603B	11.5/9	21.3/23	11.1/9	20.9/23	10.6/9	21.2/23	Any	SMC [†]
130606A ^a	15.9/18	48.8/31	16.0/18	48.8/31	16.0/18	48.8/31	Any	Any

We must search for clear features: **UV bump, flat/steep extinction curves in the UV** SMC and MW extinction laws too similar

outline

- Introduction
- Astrophysical background: extinction curves and dust properties
- Extinction curves along the l.o.s of GRBs
- What can we do with photometric measurements? COLIBRI data Nathanael Ghesquiers internship (may-sept. 2021)
- Combination of UV-optical and X-ray data
- Further step: Extinction and attenuation curves of GRB hosts

Combination of UV-optical and X-ray data

Zafar+18

SVOM meeting, OHP, nov. 2021j

Broadband Afterglow emission

Different structures in the x-ray/opt afterglow light curves:

- internal (flares) vs external shock emissions
- different external shock emission region (forward or reverse shock)
- cooling break frequencies
- energy injection
- etc..

Broadband Afterglow synchrotron spectrum

Depending on the microphysical parameters of the external shocks and the time at which we observe, the position of the typical synchrotron frequency, $\nu_{\rm m}$, can introduce a break between the NIR and X-ray emissions

Flux density (mJy)

Xspec fakeit inputs:

Kindly provided by D. Götz

- a model -> ztbabs x tbabs x pegpwrlw
- a mxt rmf file
- a mxt arf file
- a mct background file (taken as an average estimate for extragal. background)

pegpwrlw (power law, pegged normalization)

$$A(E) = F_0 \times (E/E_0)^{-\alpha}$$

- $F_0 =$ flux in micro-Jy at E_0
- E_0 = Reference Energy in keV
- α = photon index of power law

afterglow sim COLIBRI+MXT

Preliminary test: Impact of adding X_ray data on GRB 050904 afterglow at z=6.29 With an additional simulated X-ray flux

- A_v and β better constrained
- It could also help to break a degeneracy between A_V and z

SVOM meeting, OHP, nov. 2021j

Courtesy of D. Corre

Bolmer+18: 22 GRB at z>4: XRT+GROND photometry

Results:

-low Av at z>4
-SMC, LMC, MW and SN
ext curves tested
-For only 2 GRBs: better
fits with SN curve
071025 not confirmed
-no bump is found
-candidate SNe extinction
laws for 10 GRBs

outline

- Introduction
- Astrophysical background: extinction curves and dust properties
- Extinction curves along the l.o.s of GRBs
- What can we do with photometric measurements? COLIBRI data Nathanael Ghesquiers internship (may-sept. 2021)
- Combination of UV-optical and X-ray data
- Further analysis: Extinction and attenuation curves of GRB hosts

To go further: attenuation & extinction laws in galaxies

One line of sight (GRB)

Both can be measured in GRB hosts

The whole galaxy: GRB host

To conclude

- Measuring the extinction curves along the line of sight of GRB afterglows with COLIBRI data is challenging
- We can search for specific features (UV bump), very distinct shapes (steep/flat curves)
- The combination of X-ray and vis-NIR data clearly improves the measurements by breaking degeneracies
- The UV rest-frame must be covered to differentiate between the extinction curves
- Spectroscopic follow-up data when available combined with photometric data will greatly improve the analysis.
- GRBs are the only sources to get lines of sight going through star-forming regions of galaxies up to high redshifts → insight on dust evolution
- We would like to hire a PhD student in 2022 to work on simulated X-ray to NIR data and Damien's catalogue of observed afterglows