COLIBRI - Status -

S. Basa (LAM, France) F. Dolon (OHP, France)

A transient sky follow-up telescope

COLIBRI is an important element of the SVOM system:

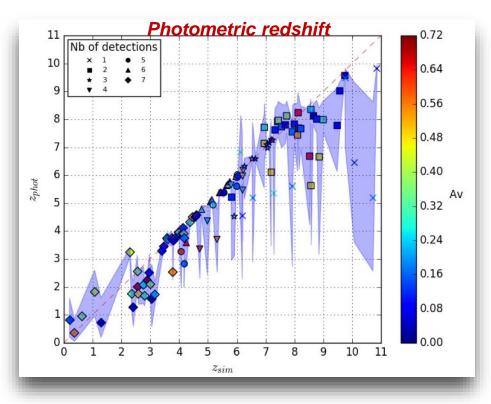
- To observe the early optical afterglow during the slew of the satellite.
- To provide fast accurate positions of faint and dark GRBs.
- To provide a fast redshift estimator to trigger instantly the largest facilities (VLT and NTT in particular).
- To complement the photometric follow-up of sources observed by SVOM during the General Program (between GRBs).

But it will be also interested in all the scientific questions addressed by the transient sky: identification of the GWs and neutrinos alerts, the study of the TDEs and the AGNs, etc.

Motivation of the project

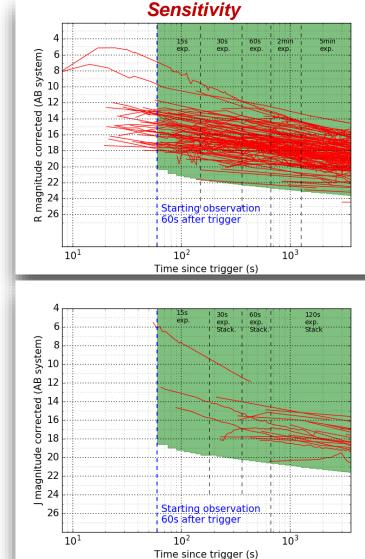
COLIBRI is born from the desire of France and Mexico to jointly develop and operate a new telescope dedicated to the transient sky, SVOM in particular, from an excellent astronomical site.

But the ambition goes far beyond by:


- Offering a modern and efficient telescope to the french and mexican scientific communities.
- Strengthening the historical links between France and Mexico.
- Training the youngest researchers in scientific themes at the forefront, and on modern observation and analysis methods.

All this is done in a very strong collaborative spirit.

Main requirements


Diameter of the primary mirror	1.3 m
Field of View (diameter)	26'
Number of simultaneous arms	 Minimum : 2 arms (1 in the visible et 1 in the NIR). Goal : 3 arms (2 in the visible et 1 in the NIR).
Sensitivity (300 sec, 5 sigma, AB system)	 r = 22.0 J = 20.0
Spectral band	Each arm has its own filter wheel : • Visible : B, g, r, i, z and y. • IR : J et H.
Delay between receiving the alert and begining an observation	<30 seconds (goal: <20 seconds)
Deadlines to send information to the SVOM Burst Advocate	First information delivered to the FSC about 5 minutes after the alert reception

GFT scientific performances

- Follow close to 100% of the GRBs detected so far.
- Good redshift precision for 3 < z < 7.5.

From D. Corre PhD.

Institutional partners

France:

- CNES funds the developments on the near-infrared camera (CAGIRE).
- FOCUS/UGA provides an ALFA near-infrared sensor for CAGIRE (joined FOCUS/ESA development).
- IPhU (replacing now OCEVU)/AMU plays a key role in this project by funding the telescope.
- **INSU/CNRS** identified the project as one of its *P0* at the two latest Colloque de Prospective. It funds part of the developments (through CSAA).

Mexico:

- **UNAM** funds a part of the developments (infrastructure at OAN).
- **CONACyT** funds a part of the developments (optical camera and beam splitter).

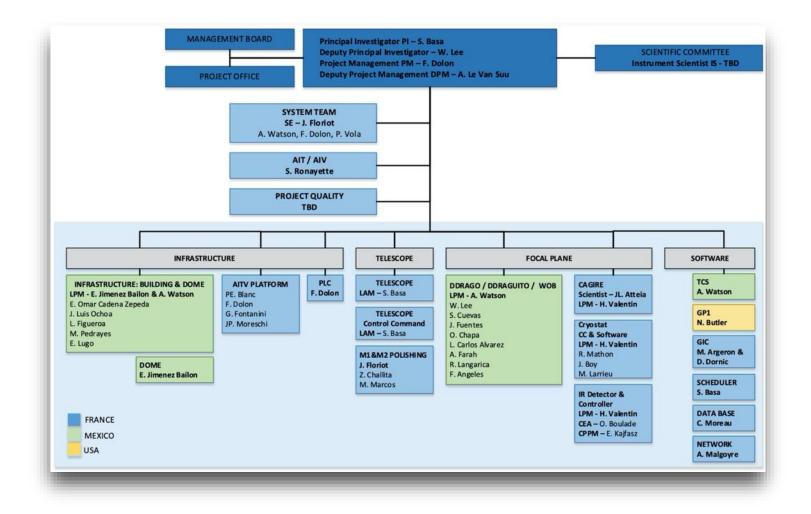
MoU

A MoU has been officially signed in November 2018.

Time allocation as defined in the MoU:

- 10% to the observatory for the hosting of COLIBRI.
- 45% to the French and Mexican scientific communities (equally divided).
- 45% to the consortium (time SVOM including here).

Time sharing must be respected over a six-month period:


- Over shorter time periods, there may be temporary imbalances in the time allocated to Parties.

Some general rules

The MoU also defines the main rules for conducting the observations:

- All the observations are performed in robotic mode (i.e., observers can never directly control the telescope).
- Time lost due to weather or technical problems, as well as for routine calibrations are not accounted for against the allocation of either country.
- Observations of alerts delivered by the SVOM mission have the highest priority and may interrupt any observation in progress. The interrupted observation program shall be re-scheduled as early as possible according to its assigned priority.
- Observations of other programs are managed in a way that shares the remaining time and other resources (for example, alerts and priorities) between France and Mexico according to the time-sharing defined in the MoU.

Project organization

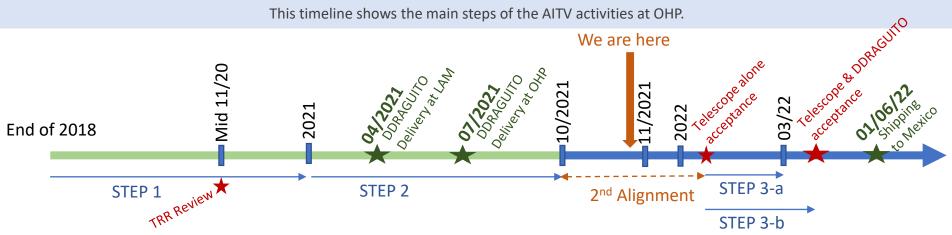
COLIBRI STATUS

- 1. INTRODUCTION
- 2. AITV at OHP
- 3. DDRAGUITO & DDRAGO Status
- 4. CAGIRE Status
- 5. SOFTWARE Status
- 6. INFRASTRUCTURE Status
- 7. CONCLUSION

COLIBRI – INTRODUCTION

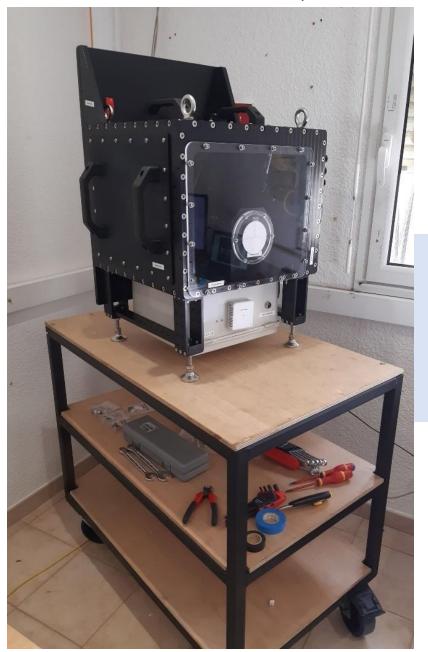
- Since March 2020 COVID-19: work at home, laboratory closed, several confinement.
- Weather condition very unstable @ OHP
- Late in the building design and construction
- Telescope shipping only when the building ready @ Mexico

Telescope on the AITV platform @ OHP



COLIBRI AITV AT OHP

Telescope, OGSE, DDRAGUITO, balancing, software


COLIBRI AITV AT OHP – TIME LINE

This timeline shows the main steps of the AITV activities at OHP.

STEP	DESCRIPTION	Description
1	 What we need to start the integration process: The test platform Telescope with its mirrors aligned Tools: OGSE, balancing tool, crane, test cameras 	DONE
2	Telescope alone validation Data analysis	DONE , results conclude to a bad alignment of the telescope. Some tests will be redo after the 2 nd alignment
3-a	DDRAGUITO: - AIT in France - Validation on sky	At LAM: optical alignment check DONE At OHP: Assembly and check DONE AT OHP: tests with the telescope -> November
3-b	Software validation	Start with DDRAGUITO test
4	Telescope dismounting, packing and shipping to Mexico	May 2022

DDRAGUITO @ OHP laboratory

DDRAGUITO AITV AT OHP

Goal: reassembly, check in lab and tests on sky

COLIBRI – DDRAGO Status

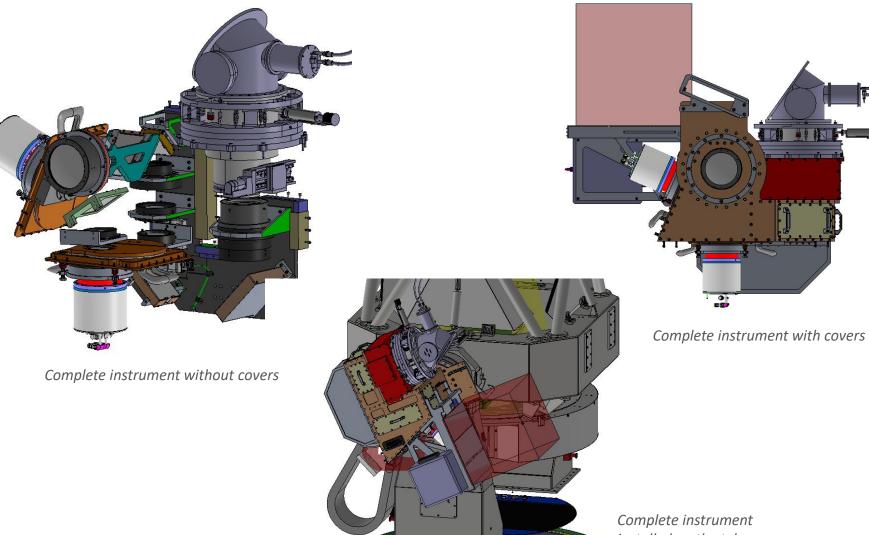
DDRAGUITO @ LAM:

• Check alignment at LAM: OK – 3 days in June 2021

DDRAGUITO @ OHP:

In September 2021:

- Computer and network installation at OHP: OK
- Camera cooling at OHP: OK
- Functional tests (filter wheel, sensors...): OK
- Cables routing inside the telescope: OK


Next step:

- Balancing
- Installation on the telescope derotator
- Tests on sky

ONLY AFTER THE FINAL ALIGNMENT OF THE TELESCOPE. TESTS FROM DECEMBER 2021 TO FEBRUARY 2021

DDRAGO STATUS AT OAN

CDR Phase

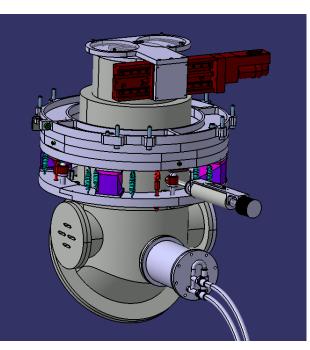
Complete instrument *installed on the telescope*

COLIBRI – DDRAGO Status

DDRAGO is in the final design phase.

DDRAGO is composed of:

- MSU: Mechanical Support Unit which carry DDRAGO, WOB and CAGIRE
- DDRAGO: Two visible channel camera: blue (band gri) and red(zy) with its close electronics
- WOB: Warm Optical Bench for CAGIRE CRYOSTAT
- CAGIRE: cryostat with Infrared detector and its close electronics


Main point:

DDRAGO optical design: finished Optical design of the WOB optics (L5 to L12): Last version of the design is validated with CAGIRE Finalization of the interfaces with CAGIRE (cryostat and close electronics) FEA analysis of the instrument (without CAGIRE) – results under analysis and check with optical tolerances Instrument control: will be validated with DDRAGUITO Order for 2nd CCD has been placed.

MAIN KEY DATES:

- DDRAGO CDR: end 2021 / beginning 2022
- Manufacturing phase: January to June 2022
- Optics delivery at UNAM: June 2022
- AIT: June October 2022
- DDRAGO acceptance at UNAM: October 2022
- DDRAGO delivery at OAN Mexico: October 2022
- WOB delivery at OAN Mexico: February 2023

CAGIRE STATUS @ IRAP CDR phase

Cryostat 3D CAD model

Cryostat prototype 3D print

Cryostat prototype 3D print

COLIBRI – CAGIRE Status

CAGIRE is in the final design phase. The CDR was led the 8 of July 2021.

Main point:

Optical design: Last version of the design is validated with the DDRAGO team

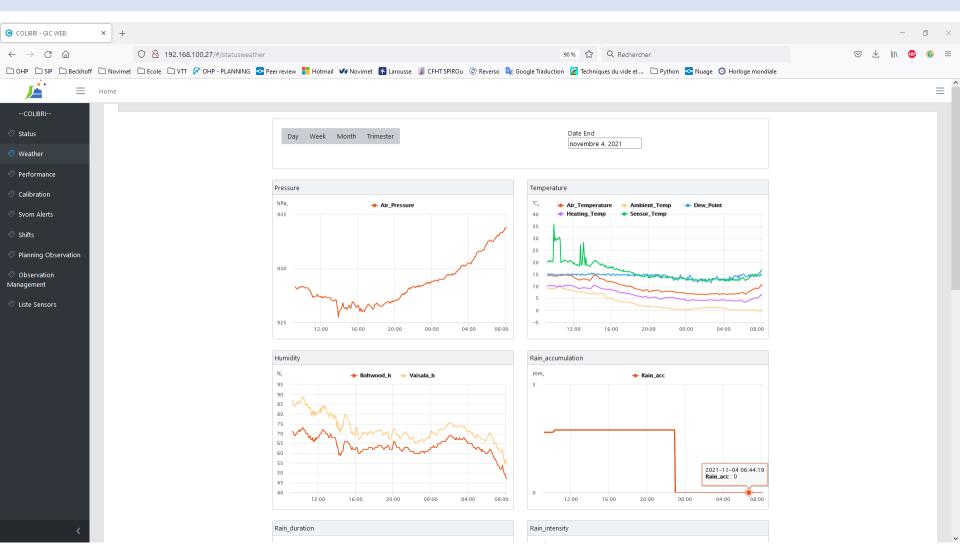
Work with Epsilon for the thermal study, it helps for

- Cryostat design: design in progress and updates with the results of the analysis
- Cryostat manufacturing: material type ⇒ aluminum, manufacturer ⇒ SATIL
- To determine the thermal power to extract and in fine the cryocooler selection

Lynred Detector:

- 4 had been delivered to CEA by Lynred: 2 science and 2 engineering.
- 1 science is really better than the other.
- Discussion with ESA are led to decide which one is for CAGIRE.

AIT tools design in progress.


Close electronics: design and integration on DDRAGO finished.

MAIN KEY DATES:

- New evaluation of some of the CAGIRE CDR documents during the DDRAGO CDR
- Manufacturing phase: December 2021 to September 2022
- Detector delivery at IRAP: April 2022
- AIT Cryostat: September October 2022
- CAGIRE acceptance at IRAP: February 2023
- CAGIRE delivery at OAN Mexico: March 2023

SOFTWARE STATUS

CPPM, UNAM, LAM, OHP

GIC & GP1 Pipeline: demonstration today by Damien

- GIC / GP1 computer is installed @ OHP
- GP1 will be tested (soon) with the first image of DDRAGUITO on sky
- Meanwhile TCS running, GIC is connected with PLC and the seeing monitor

TCS: will start in December 2021

DATABASE: will start in 2022

PLC: in progress

- Installation on the AIT platform @ OHP in July 2021
- Communication with TCS To be tested (testing with TCS not done)
- Weather monitoring Done
- UPS monitoring Done
- Observatory operating mode Done
- Sensors monitoring Done
- Telescope controller interconnection To be done and tested
- Some functionalities will be only tested at OAN (Dome, louvers, anti-intrusion...)
 To be done and tested

COLIBRI BUILDING AT OAN – MEXICO

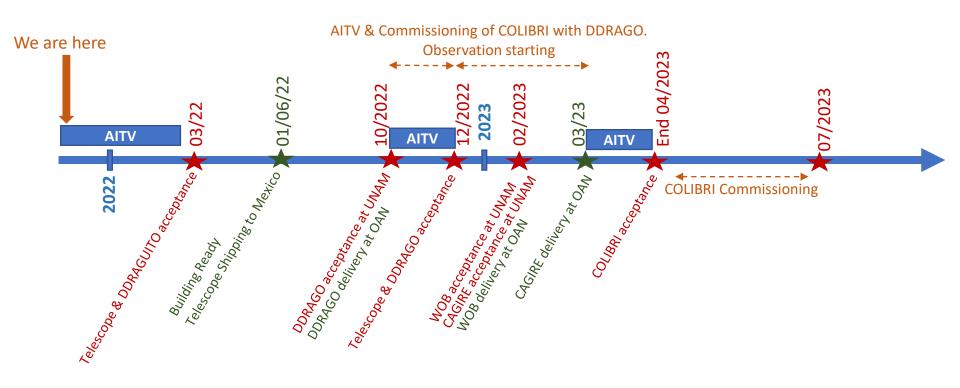
> JUNE 2022

COLIBRI – Infrastructure status

MAIN STEPS:

- Cliff Reinforcement: design is finished, the contract is passed. Wait for the **environmental permit** to start the work on site.
- Telescope pillar: construction is finished
- Building: design almost finished, need the work on cliff finished to start the construction process
- Service building and AC unit design: finished
- Weather mast & Seeing monitor: in operation @ OHP, design and location @ OAN is validated

MAIN KEY DATES:


- Environmental permit for the cliff: end of October 2021
- Cliff reinforcement work on site: January 2022 (1 month)
- Contract for building and services: finished end of January 2022
- Building and service building construction: February to June 2022
- Dome installation: May 2022
- Telescope Installation: September 2022

COLIBRI – NEXT MAIN KEY DATES

Main work for the next 6 months

- Telescope final alignment
- Test on sky with DDRAGUITO
- Software validation at OHP
- DDRAGO & CAGIRE CDR
- Building construction
- Telescope shipping to Mexico

