Gravitational waves from bubble collisions in first order phase transitions

Marek Lewicki

University of Warsaw

9th LISA Cosmology Working Group Workshop 9 XII 2021

Based on:

J. Ellis, ML, J. M. No arXiv:1809.08242, 2003.07360
J. Ellis, ML, J. M. No, V. Vaskonen arXiv:1903.09642

ML, V. Vaskonen arXiv: 1912.00997, 2007.04967, 2012.07826

Pulsar Timing [David Champion/NASA/JPL]

LISA wiki/Laser_Interferometer_Space_Antenna

Einstein Telescope

Gravitational waves from a PT

• Strength of the transition

$$\alpha \approx \left. \frac{\Delta V}{\rho_R} \right|_{T=T_*}, \quad \Delta V = V_f - V_t$$

• Average size of bubbles upon collision (Characteristic scale)

$$\frac{HR_*}{HR_*} = (8\pi)^{\frac{1}{3}} \left(\frac{\beta}{H}\right)^{-1}$$

- Main mechanisms of GW production:
 - collisions of bubble walls:
 - sound waves:
 - turbulence

۲

$$\begin{split} \Omega_{\rm col} \propto \left(\kappa_{\rm col} \frac{\alpha}{\alpha+1} \right)^2 \left(HR_* \right)^2 \\ \Omega_{\rm sw} \propto \left(\kappa_{\rm sw} \frac{\alpha}{\alpha+1} \right)^2 \left(HR_* \right)^2 \\ \Omega_{\rm turb} \propto ? \end{split}$$

• Bubble collisions are only relevant in very strong transitions

 $\kappa_{\rm col} \approx \mathcal{O}(1)$ only if *alpha* $\gg 1$ (1)

Classically scale-invariant CW-like potential

• Generic classically scale-invariant potential

$$V(\phi, \mathbf{T}) = g^2 \mathbf{T}^2 \phi^2 + \frac{3g^4}{4\pi^2} \phi^4 \left(\log\left(\frac{\phi^2}{v^2}\right) - \frac{1}{2} - \frac{g^2 \mathbf{T}^2}{2v^2} \right)$$

$U(1)_{B-L}$ Example

Energy propagation from lattice simulations

Energy propagation from lattice simulations

• Vacuum Trapping can also be verified analytically: R. Jinno, T. Konstandin and M. Takimoto: 1906.02588

Abelian Higgs Model: Energy Scaling

Computation of the GW spectrum

• 3D simulation with energy scaling as $E \propto R^{-n}$ after collision

plot from T. Konstandin 1712.06869 with $E \propto R^{-2}$

Bubble Collision Spectrum

	$100\overline{S}$	$\bar{\omega}/\beta$	a	b	с
$T_{zz} \propto R^{-2}$	4.23 ± 0.1	0.68 ± 0.01	1.00 ± 0.02	2.17 ± 0.05	2.02 ± 0.1
$T_{zz} \propto R^{-3}$	3.61 ± 0.1	0.82 ± 0.01	2.34 ± 0.03	2.41 ± 0.02	4.20 ± 0.2
$T_{zz} \propto R^{-4}$	3.46 ± 0.1	0.93 ± 0.01	2.87 ± 0.04	2.42 ± 0.02	4.63 ± 0.2
env.	2.75 ± 0.1	1.72 ± 0.04	2.98 ± 0.02	1.01 ± 0.02	2.18 ± 0.1

• LISA will have optimal reach for transition in the $T_{reh} \approx 10 - 100$ GeV range.

• Observable bubble collision signal occure in very strong transitions $\alpha > 10^{10}$.

 $\rightarrow\,$ Bubble collision signal would indicate a scale invariant model.

• Shape of the spectrum encodes details of the particle physics model:

 $\rightarrow \Omega \propto f$ at low frequencies indicates global symmetry breaking. $\rightarrow \Omega \propto f^{2.3}$ at low frequencies indicates gauge symmetry breaking.