

General Relativity in	the solar system	
Solution for the metric	$a_{00} = 1 + 2\phi + 2\phi^2 + \dots$	
 with the Sun treated as a point-like motionless source 	$g_{ij} = -\left(1 - 2\phi + \ldots\right)\delta_{ij}$	
and using spatially isotropic coordinates	$\phi \equiv -\frac{m}{r} , \phi \ll 1$	
 written as a Taylor expansion of the Newton potential 	$m\equiv \frac{GM}{c^2}\simeq 1.5{\rm km}$	
Solution often tested through a confrontation of data with the		
larger family of PPN metrics		
$g_{00} = (1 + 2\phi + 2\beta\phi^2 + g_{jk}) = -(1 - 2\gamma\phi +)$	$\beta = \gamma = 1 \text{ in GR}$	
> Comparisons between observations and motions predicted as the geodesics of this metric can be expressed in terms of deviations of the PPN parameters $\beta - 1, \gamma - 1$		

Why the tests are going on ?	
Gravity law tests are in good agreement with GR but windows are still open for deviations	
GR is a classical theory which shows inconsistencies with quantum field theory	
And unification models predict (small) deviations to be observed at short or long distances	
"Dark matter" and "dark energy" are introduced to cure defects in gravitational observations at galactic and cosmic scales	
A few measurements in the solar system show deviations from the predictions of GR ("Pioneer anomaly")	
 It is extremely important to test GR at large scales Tests with probes in the solar system 	

Thank for your attention		
Collaborations	esa	
"Pioneer Anomaly Explorer" Hansjorg Dittus et al		
"Investigation of the Pioneer Anomaly @ ISSI" Slava Turyshev <i>et al</i>	cnes	
"Deep Space Gravity Tests" Serge Reynaud et al	1	
"Groupe Anomalie Pioneer" Serge Reynaud et al	CILLS	
"ODYSSEY" Bruno Christophe et al		
"SAGAS" Peter Wolf et al	<u>U</u> PMC	
"GAP on EJSM" Bruno Christophe et al	KObservateine	
See the draft report of the "Fundamental Physics Roadmap	Observatoire de la Lôte d'Apar	
Advisory Team" <u>http://sci.esa.int/fprat</u>		