

Update on GANIL facilities Exploring the EOS at low densities.

A. Chbihi (GANIL)

- Status of GANIL
- Cyclotrons: SPIRAL1
- LINAC: SPIRAL2
- Instrumentation and the physics at GANIL:
 VAMOS-AGATA, LISE, ACTAR: Nuclear structure
- FAZIA-INDRA: nuclear reactions, fusion, fission, multifragmention, EOS

Highlights from GANIL

- Commissioning of SPIRAL2 LINAC
- Commissioning of NFS : first experiment with NFS
- New beams from the SPIRAL1 upgrade
- Experimental campaigns with AGATA coupled to NEDA DIAMANT and to MUGAST+VAMOS
- New detectors: NEDA, ACTAR TPC, FAZIA, MUGAST

Abdelouahad Chbihi

SPIRAL-2 phase 1 building

Cryomoduls

12 cryomodules A (1 cavity β =0,07)

7 cryomodules B (2 cavities β =0,12)

High Energy Beam Line

To S3 and Production Building

neutron beams

n-beam produced by d

NEWS

18/11/21 SPIRAL2 LINAC 10 kW

Le 16 Novembre 2021, un faisceau de deuterium de 5000µA crête a été accéléré à 19.15 MeV/A sur le beam dump SAFARI. L'absence de pertes détectées a permis d'augmenter la puissance à ~10kW de faisceau.

On 16 November 2021, a 5000µA peak deuterium beam was accelerated to 19.15 MeV/A on the SAFARI beam dump. The absence of detected losses allowed the power to be increased to 10kW of beam.

MUGAST campaign 2020

Preliminary : Shorter than previous measurement ; shorter than ab-initio discussion ...

+ + + + +

E_v [keV]

2218

2214

2395(1)

E_v [keV]

Experimental setup

Very narrow resonances confirmed, V. Girard-Alcindor et al to be submitted

ACTAR TPC 4D observation of emitted proton

The direct
 observation of the
 ⁵⁴Ni isomeric state

Exploring the EOS at low densities.

- Goals:
 - constrain the density dependence of the symmetry energy at low densities
 - improve the knowledge of volume and surface contributions to the symmetry energy in nuclei
 - investigate the experimental transport coefficients (experimental input to models)
 - effects of the cluster production on the symmetry energy and related observables

- Tools:
 - measurement of the isotopic distributions of fragments & clusters produced in HI-collisions at Fermi energies
 - determination of symmetry energy coefficients
 - experimental study of isospin diffusion and migration processes and how to disentangle them from secondary decays.
 - characterization of the cluster production

three first points already presented by Quentin experiment INDRA-VAMOS

effects of the clusters on the collision dynamics

Akira Ono, Journal of Physics: Conference Series 420 (2013) 012103

overestimation of free protons (neutrons) underestimation of alpha's

butter reproduction of the whole Z-distribution and LCP

Light cluster production in central symmetric HI reactions from Fermi to GeV energies

Ni+Ni and Ca+Ca INDRA+FOPI

Au+Au INDRA+FOPI+HADES

R. Bougault et al., Symmetry 2021, 13, 1406

First INDRA-FAZIA campaign

E789 - Isospin transport and symmetry energy

Isospin equilibration

Projectile and target N/Z equilibrate with time Equilibration rate sensitive to the EoS parameters Needs to follow N/Z as a function of time

Experimental approach

Interaction time and window size depend on b Replace time by centrality (multiplicity) Isospin equilibration ratio built on 4 systems

E789 INDRA-FAZIA experiment

^{58,64}Ni+^{58,64}Ni collisions at 32 and 52 MeV/nuc Good Z,A resolution of FAZIA \rightarrow (N-Z)/A ratios Full angular coverage of INDRA \rightarrow centrality

Simulations at 52 MeV/A

AMD-soft and AMD-stiff + GEMINI Realistic response of INDRA-FAZIA device Measurable dependency on L_{sym} EoS parameter

INDRA-FAZIA coupling in GANIL

INDRA (1993)

240 modules (θ from 14° to 178°) Si-CsI or CsI telescopes Fully analogic electronics

FAZIA (2018)

12 Blocks : 192 modules (θ from 1.5° to 13°) Si-Si-CsI(Tl) telescopes Fully digital electronics

FAZIA performances

Z-identification up to Z=54 A-identification up to Z~20-25 Isospin-related observables of interest

INDRA performances Z-identification up to Z=92 A-identification up to Z=5-8 Centrality (impact parameter) estimator

Abdelouahad Chbihi

E789 - Overview of the data

Reactions

⁵⁸Ni+⁵⁸Ni at 32 MeV/nuc ~30 10⁶ events
⁵⁸Ni+⁶⁴Ni at 32 MeV/nuc ~30 10⁶ events
⁶⁴Ni+⁵⁸Ni at 32 MeV/nuc ~30 10⁶ events
⁶⁴Ni+⁶⁴Ni at 32 MeV/nuc ~30 10⁶ events
⁵⁸Ni+⁵⁸Ni at 52 MeV/nuc ~30 10⁶ events
⁵⁸Ni+⁶⁴Ni at 52 MeV/nuc ~30 10⁶ events
⁵⁸Ni+⁶⁴Ni at 52 MeV/nuc ~30 10⁶ events
⁶⁴Ni+⁵⁸Ni at 52 MeV/nuc ~30 10⁶ events
⁶⁴Ni+⁶⁴Ni at 52 MeV/nuc ~30 10⁶ events

Observables of interest

Z and A of forward-emitted fragments (FAZIA) Total multiplicity to estimate centrality (INDRA+FAZIA)

Preliminary results

Population of the nuclear chart for different centrality

First time we can show the evolution of reaction mechanism in 2D !

E789 - Preliminary diffusion plot

Equilibration ratio

Quasi-projectile Z and A measured with FAZIA Mixed systems normalized to the extreme ones

$$\begin{split} &\mathsf{R}(\delta) = (2X_1 - X_1 - X_2)/(X_1 - X_2), \text{ with } X_i = f(Z, \mathsf{N}) = \delta \\ &\mathsf{R}(\delta) = +1 \ (-1): \text{ no isospin equilibration} \\ &\mathsf{R}(\delta) = \mathsf{O} \qquad : \text{ full isospin equilibration} \end{split}$$

Preliminary result

Small equilibration at high impact parameter Partial equilibration at low impact parameter

Next steps

Multiplicity → impact parameter, model-independent method [Frankland, in preparation] Compare with transport models exploring the proper parameter space (Bayesian analysis)

Expected scientific impact

EoS empirical parameter probability distribution and correlations between parameters Compare to parameter distributions coming from astrophysic observations Any tensions between micro- and macro-parameters would sign new physics

adapted from Xu PRC16

UNDP3

new INDRA electronics. 2021 Mesytech

will be used in next spring in the INDRA-FAZIA campaign of measurements

Conclusion

- End of the LINAC commissioning
- the first experiments with neutron beam from NFS already started
- The results of the INDRA-VAMOS will be submitted for publication soon
- Analysis of the INDRA-FAZIA experiments are in the way
- Cluster production as function of wide range of incident energy should give important constraints to the models.
- The next INDRA-FAZIA campaign of measurements (with the new iNDRA-electronics) should give interesting results.

