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Halos probe dark matter
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Lensing inference
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properties

Connect to 
DM model
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× 100 
(HST, Keck)

At present 2020s

1507.02657

× 100,000 
(Euclid, Rubin, JWST, ELT)

https://arxiv.org/abs/1507.02657
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Measures a single halo’s properties, 
marginalized over particular lens model

Marginalize over full halo population 
and generic lens model

Current analyses Goal
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Inference challenges

• Signal is small compared to noise 
and variations between images

• Marginalization over numerous 
source, lens and halo parameters

• Joint posterior has ~Nsub! modes; 
likelihood can be intractable
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Truncated marginal neural ratio estimation
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Truncated marginal neural ratio estimation
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• Direct marginal inference of subhalo posteriors over 
O(103-105) source, lens and subhalo population parameters
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Truncated marginal neural ratio estimation
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• Direct marginal inference of subhalo posteriors over 
O(103-105) source, lens and subhalo population parameters

• Truncation enables targeted inference to uncover tiny signals

• Can leverage simple classifier CNNs and the swyft package

2107.01214

https://github.com/undark-lab/swyft/
https://arxiv.org/abs/2107.01214


1. Analytically-tractable case
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Good agreement with analytic calculation after several rounds of truncation

Lens, source and 
halo mass fixed

Preliminary!
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2. One halo, simple source model
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Can marginalize over source and lens parameters…

Preliminary!
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3. One halo, Gaussian process source
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First constrain lens and source with variational inference, then apply TMNRE

• =  subhalo108 − 1011.5 M⊙
 2010.07032, 2105.09465

Marginalized over O(105) source and lens parameters

Training data Inference

https://arxiv.org/abs/2010.07032
https://arxiv.org/abs/2105.09465
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4. Multiple subhalos, Gaussian process source
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Conclusions

• Measuring individual halos is an important 
component of dark matter lensing analyses 

• TMNRE enables fully marginalizing over lens, 
source and halo population 

• Next steps: replace variational inference step 
with TMNRE, integrate with other subhalo 
analyses, and apply to real data
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Thank you!


