

Imaging the Deep Earth with neutrinos

<u>Véronique Van Elewyck</u> Laboratoire AstroParticule et Cosmologie Université Paris Cité & Institut Universitaire de France

... Many thanks to my collaborators:

Lukas Maderer Joao Coelho Antoine Kouchner Simon Bourret (2015-2018)

...& many other colleagues from

Edouard Kaminski

Arwen Deuss Rûna van Tent

Universiteit Utrecht

How can we probe the Earth's interior ?

Jules Verne's way: a long journey...

How can we probe the Earth's interior ?

The geophysicist's way: studying seismic waves from earthquakes

The geophysicist's way: studying seismic waves

Inversion of seismic wave data

+ gravimetric constraints on Earth's total mass & moment of inertia:

→ radial profile of Earth matter density inferred at ~1% precision

In a given layer: velocity of seismic waves increases with depth due to higher pressure/density

Inversion of seismic wave data

+ gravimetric constraints on Earth's total mass & moment of inertia:

→ radial profile of Earth matter density inferred at ~1% precision

+ study of rock samples from crust & mantle, meteorites

+ high-pressure experiments → chemical composition of mantle/core:

Upper mantle / Lower mantle:

Silicate minerals (SiO₄ + Fe, Mg, Mn...) Benchmark composition: pyrolite (Z/A=0.496)

Outer core Liquid (no S-waves) Inner core Solid Benchmark composition: Fe-Ni alloy (Z/A=0.466)

+ light elements in outer core ? (Si, O, S, C, H)

CAVEAT: the radial model is only an approximation!

CAVEAT: the radial model is only an approximation!

Looking at the Earth's interior...with neutrinos?

Early (conceptual) attempts:

See review by W. Winter, Earth Moon Planets 99 285 (2006)

a) Isotropic flux

 b) High-energy neutrino beam

c) Cosmic point source

Fixed detector, different baselines

Need distributed sources...

Controlled source

Needs steerable beam & moving detector...

Earth's rotation provides different baselines

Uncontrolled source, low fluxes

Looking at the Earth's interior...with neutrinos ?

Early (conceptual) attempts:

See review by W. Winter, Earth Moon Planets 99 285 (2006)

 b) High-energy neutrino beam

Controlled source

Needs steerable beam & moving detector...

c) Cosmic point source

Earth's rotation provides different baselines

Uncontrolled source, low fluxes

✓ Atmospheric neutrinos !

Atmospheric neutrinos

- ➤ (almost) isotropic flux
- $\succ known flavour composition$ $(v_e, v_{\mu} + antiparticles)$
- > Wide range of energies (GeV \rightarrow PeV)
- steeply falling power-law spectrum:

Atmospheric neutrino detectors: SuperKamiokande

νµ

Ve

Water-Cherenkov detector:

~3800 atmospheric neutrinos/year Position & angular reconstruction v_{μ} / v_{e} separation:

Atmospheric neutrino detectors: SuperKamiokande

KM3NeT layout: ARCA vs ORCA

	ORCA	ARCA
String spacing	20 m	90 m
OM spacing	9 m	36 m
Depth	2470 m	3500 m
Instrumented mass	~7 Mton	~ 2 × 0,5 Gton

ORCA: optimised for neutrino oscillation studies & mass hierarchy measurement $1 \rightarrow 100 \text{ GeV energy}$

ARCA: optimised for HE neutrino astronomy TeV \rightarrow PeV energy

Neutrino telescopes: event topologies

credit: J. Tiffenberg, NUSKY11

TRACKS:

- Only for v_{μ} induced muons
- Good angular resolution
- interaction vertex can be outside of the detector:

→ increased effective volume ...but poor energy resolution

SHOWERS (or CASCADES):

- Sensitive to v_e , v_τ flavours
- + all-flavours NC interactions
- Mostly contained events, quasi-spherical topology
- \rightarrow Limited angular resolution
- \rightarrow Good energy resolution

DUNE also sees atmospheric neutrinos!

Future neutrino beam experiment Fermilab \rightarrow Sanford

Sanford Underground Research Facility B00 miles (1300 kilometers) NEUTRINO PRODUCTION PRODUCTION PROTON ACCELERIATOR

Liquid Argon Time Projection Chambers: ionization of liquid Argon by charged secondary particles from neutrino interactions

Towards the largest LAr TPCs in existence (4 x 17 kT modules)

Detection of drift electrons → reconstruction of neutrino energy, flavor, direction

Precise reconstruction of events: High resolution in energy, angle Low threshold (~0.1 GeV)

Earth tomography with atmospheric neutrinos

The neutrino transmission probability depends on the amount of matter traversed, hence on the neutrino baseline

Absorption tomography is directly sensitive to Earth matter density ρ_m

2018: first study with real IceCube data

1 yr sample (2011-2012) – upgoing ν_{μ} Radial model with 5 layers of constant density

A. Donini et al., Nature Phys. 15 (2019) 1, 37-40

2018: first study with real IceCube data

1 yr sample (2011-2012) – upgoing ν_{μ} Radial model with 5 layers of constant density

A. Donini et al., Nature Phys. 15 (2019) 1, 37-40

Global quantities inferred from neutrino data are in agreement with gravimetric measurements (but large uncertainties!)

Similar projections for ARCA

(preliminary study:

- no NC regeneration included
- only atmospheric flux
- no systematics
- Low MC statistics)

L. Maderer et al. [KM3NeT Coll.], PoS(ICRC 2021) 1172

2018: first study with real IceCube data

1 yr sample (2011-2012) – upgoing ν_{μ} Radial model with 5 layers of constant density

A. Donini et al., Nature Phys. 15 (2019) 1, 37-40

- → (much) more statistics needed to reach
 < few % uncertainty level
 → main systematics: neutrino flux &
- cross-section, detector effects

Neutrino oscillations are affected by the presence of matter:

→ Resonance energy for enhanced neutrino oscillations due to matter effects:

$$E_{\rm res} \equiv \frac{\Delta m_{31}^2 \, \cos 2\theta_{13}}{2 \sqrt{2} \, G_F \, N_e} \simeq 7 \, {\rm GeV} \, \left(\frac{4.5 \, {\rm g/cm}^3}{\rho}\right) \left(\frac{\Delta m_{31}^2}{2.4 \times 10^{-3} \, {\rm eV}^2}\right) \cos 2\theta_{13} \stackrel{\simeq}{=} 3 \, {\rm GeV} \, ({\rm core}) \\ \cong 7 \, {\rm GeV} \, ({\rm mantle})$$

for neutrinos if $\Delta m_{13}^2 > 0$ / antineutrinos if $\Delta m_{13}^2 < 0$ \rightarrow depends on the neutrino mass hierarchy – not yet measured...

Oscillation (survival) probabilities for v_e and v_μ crossing the Earth:

Oscillation (survival) probabilities for $v_{\rm e}$ and v_{μ} crossing the Earth

Oscillation (survival) probabilities for v_{e} and v_{μ} crossing the Earth

Constraining the deep Earth composition ?

Measured in neutrino oscillation patterns

Typical values of Z/A for chemical elements or alloys present in the Earth

Constraining the deep Earth composition ?

Measured in neutrino oscillation patterns

Assuming known density profile, oscillation tomography is sensitive to Earth composition !

See also W. Winter, Nucl. Phys. B 908 (2016)

Typical values of Z/A for chemical elements or alloys present in the Earth

Constraining the deep Earth composition ?

PINGU outer core, normal neutrino hierarchy

ORCA 10 years, normal neutrino hierarchy

Bourret et al.[KM3NeT Coll.], EPJ Web Conf. 207 (2019) 04008

→ A few % sensitivity on Z/A in outer core and inner mantle within reach of the upcoming generation of Cherenkov detectors (10 years timescale)

Needs measurement of neutrino mass hierarchy first! (aka sign of Δm_{13}^2)

Core composition with Hyperkamiokande

Resolution	Hyper-K			
σ _{mom} e/μ	5.6% /3.6%			
σ _{dir} e/μ	3.0° / 1.8°			
Atmospheric	v CC Purity			
FC e-like	94.2 %			
FC µ-like	95.7 %			
PC µ-like	98.7 %			
MIS PID	< <mark>1%, 1</mark> GeV			

Good reconstruction/ particle identification performances

Preliminary study on outer core composition: Normal hierarchy assumed Most sensitivity from v_e channel Exclude extreme composition models after ~15 years ?

...need even bigger detectors ?

Core composition with "enhanced PINGU"

A few years of PINGU \rightarrow ~30 Mton yr:

Exclude extreme composition models for the outer core ? Probe the Hydrogen content ?

Rott, Taketa & Bose Scientific Reports 5, 15225 (2015)

CAVEATS:

- Normal hierarchy assumed
- Optimistic resolutions below 5 GeV
- 100% detection efficiency down to 1 GeV
- Perfect PID (pure track channel)
- No systematics included
 (atmospheric flux, oscillation parameters, neutrino cross-section,...)

L. Maderer, J. Coelho, E. Kaminski, V. Van Elewyck, in preparation for J. Geophys. Res.

DUNE (liquid Argon)

... Use parametrized detector response function:

... Use parametrized detector response function:

Start from distributions of interacting events...

...then apply detector response and compute statistical significance (signed chi2)

for 20 years detector lifetime:

Scan the next-generation (NextGen) detector parameter space: Here, FeNiSi₂O₄ vs FeNiH

\rightarrow Combination of high exposure (thus, mass) and very good resolution needed

Start from distrib	utions of	interact	ing events	$\sigma(E)/E$	σ_{θ} (deg)	E_{th}^{class} (GeV)	E_{pl}^{class} (GeV)	P_{max}^{class}
ORCA-like	8	2	10	25%	$30/\sqrt{E}$	2	10	85%
HyperKamiokande-like	0.40	0.1	0.2	15%	$15/\sqrt{E}$	0.1	0.2	99%
DUNE-like	0.04	0.1	0.2	5%	5	0.1	0.2	99%
Next-Generation	10	0.5	1.0	$5\%+10\%/\sqrt{E}$	$2 + 10/\sqrt{E}$	0.5	1	99%

The bands indicate potential of CC/NC separation (\rightarrow background reduction)

→ ORCA and DUNE show similar performance, despite different detection techniques
 → HyperKamiokande outperforms the other upcoming detectors, but resolution/size still not sufficient to distinguish between different realistic core composition models

→ NextGen detector achieves > 1σ discrimination for FeNi AND FeNiSi₂O₄ vs FeNiH in less than 10 years

A NEXT-GENERATION NEUTRINO DETECTOR OPTIMISED FOR TOMOGRAPHY ?

 \rightarrow need > 10 Mton

 \rightarrow need < 1 GeV

 \rightarrow need > 95%

 \rightarrow need < 15%

 \rightarrow need < 10°

Effective mass Energy threshold Track/shower (PID) Energy resolution Angular resolution

...and normal mass hierarchy of neutrinos (to be measured by ORCA, JUNO, DUNE,...)

Outlook: composition anisotropies in the mantle ?

LLSVP = 'Large Low Shear Velocity Province' Low seismic velocity $\stackrel{?}{=}$ hot $\stackrel{?}{=}$ upgoing High seismic velocity $\stackrel{?}{=}$ cold $\stackrel{?}{=}$ downgoing

 \rightarrow This interpretation does not hold for changes in chemical composition

Depth (km

 \rightarrow Need to know the density!

Stable piles?

Outlook: composition anisotropies in the mantle ?

Collaboration with A. Deuss R. Van Tent

Universiteit Utrecht

LLSVP = 'Large Low Shear Velocity Province' Province'

High seismic velocity [?] = cold [?] = downgoing

→ This interpretation does not hold for changes in chemical composition

 \rightarrow Need to know the density!

→ Combine neutrino data with seismic normal modes measurements: whole-Earth oscillations, directly sensitive to matter density

Conclusions and Perspectives

Neutrinos offer novel methods to probe the Earth's interior:

Absorption tomography (TeV-PeV neutrinos)

can inform on **Earth matter density in D**" and LLSVP \rightarrow needs large statistics of events at >10 TeV energies (IceCube/ARCA)

- Oscillation tomography (~GeV neutrinos)
 - can inform on core/lower mantle composition
 - → needs large statistics of events at ~GeV energies (ORCA/PINGU)
 - → needs improved detector performances (lower threshold/better reco)
 - \rightarrow needs to resolve first the neutrino mass hierarchy

Upcoming detectors → benchmark sensitivity ~ few % after 10 years ...not enough to constrain realistic models

→ A case for next-generation detectors optimised for neutrino tomography

- ... reach 1% sensitivity level
 - (H in outer core, H_2O in mantle...)

... **detector network** for combined measurements (3D profiles and large-scale inhomogeneities)

ORCA sensitivity to Z/A

Oscillation parameters from NUFIT 3.2 $\sin^2\theta_{23} = 0.5$; $\delta_{CP} = 0$

esizia outercore

0.5

Ο

0.6

 2σ

3σ

KM3NeT

- ✤ Systematics treatment improved:
- includes MC sparseness effect
- flavour and polarity skews
- channel-by-channel normalization
- Simultaneous fit of other layer

Combined measurement:

0.3

10 years, true NH, sin² θ_{23} = 0.50, δ_{cp}

_ _____

0.2 [.40

0.45

0.50

0.55

0.60

Test Z/A mantle

