
KIWAKU, CONTAINERS WELL MADE
GENERATIVE PROGRAMMING FOR EFFICIENT HPC DATA STRUCTURES

April 8, 2022 REPRISES

Sylvain JOUBE

Joël FALCOU, Hadrien GRASLAND, David CHAMONT.

Powered by Markdeep and Markdeep-Slides

file:///home/data_sync/academique/These/Kiwaku/kiwaku/talks/reprises/images/lisn.png
file:///home/data_sync/academique/These/Kiwaku/kiwaku/talks/reprises/images/ijclab.png
file:///home/data_sync/academique/These/Kiwaku/kiwaku/talks/reprises/images/ccby40.png

Context

nD Arrays : a pervasive tool

● Main data structure in numerical simulations
● Expected to be efficient
● Expected to be easy to use yet expressive

Problem already addressed many times :

1/21

file:///home/data_sync/academique/These/Kiwaku/kiwaku/talks/reprises/images/standards.png

Context

nD Arrays : a pervasive tool

● Main data structure in numerical simulations
● Expected to be efficient
● Expected to be easy to use yet expressive

Problem already addressed many times :

Libraries C++ Standard ?

std::vector, std::valarray, std::mdspan ✓

EIGEN, Armadillo, xtensor, Blaze, Kokkos, ... ✗

2/21

What if the real issue was a software design problem?

nD Array Design Space

A small sampling

● Owning or non-owning array ?
● Are my dimensions runtime or compile-time ? or both ?
● Storage order : C, FORTRAN, arbitrary, ... ?
● Indexes start at 0 ? 1 ? −3 ? any user value ?
● Memory allocation : Allocator-based ? Which allocator model ? Stack or Heap ?

One implementation to rule them all ?

● Monolithic implementation leads to unmaintainable code
● Arbitrary restrictions on API is not a solution

3/21

OUR POSITION

Apply a different design strategy to the problem : generative programming

Generative Programming [Czarnecki et al. : 2002]

Domain Specific Generative Components Executable Code
Description

Translator

In

a 7 b x

Parametric
Sub-Components

4/21

Existing solutions

6/21

Overview

What do users want?

● Small and non-ambiguous interface
● High discoverability
● Clear and concise documentation

What do users deal with?

● Some APIs suffer from feature creep
● Some APIs require strong programming skills
● Some (most) APIs are sometimes counterintuitive and verbose

What is missing?

● User friendly for non computer experts
● Keep API scope reasonable 7/21

Painful example : std::vector

Higher dimensions vector declaration

// 5D vector declaration and creation

std::vector<std::vector<std::vector<std::vector<std::vector<float>>>>>

 my_vect(d0,

 std::vector<std::vector<std::vector<std::vector<float>>>>(d1,

 std::vector<std::vector<std::vector<float>>>(d2,

 std::vector<std::vector<float>>(d3,

 std::vector<float>(d4)
)))

);

// Access to fields

my_vect[i0][i1][i2][i3][i4] = some_float;

● For a array, allocations occurs
● Data access induces spurious cache misses
● Memory is not contiguous, leading to sub-par performance

8/21

Painful example : std::mdspan

Extent definition

1 std::extents<4,3> fixed_4x3; // Compile-time known extent

2 std::extents<std::dynamic_extent,std::dynamic_extent> dynamic(4,3); // Runtime known extent

3

4 std::extents< std::dynamic_extent,std::dynamic_extent,std::dynamic_extent,std::dynamic_extent

5 , std::dynamic_extent,std::dynamic_extent,std::dynamic_extent,std::dynamic_extent // Ughhhh

6 > dyn8d;

Type interface

1 template< typename T, typename Extents

2 , typename LayoutPolicy = std::layout_right, typename Accessor = std::accessor_basic

3 >

4 class mdspan;

9/21

Painful example : Expression template libraries

API inconsistencies and traps

auto unexpected_lazy_evaluation(matrix const& A, matrix const& B)

{

 auto C = A * B; // The type of C is not matrix

 return C;

}

template<typename T> auto dangerous_reference_to_temporary(T const& t)

{

 matrix m = t + t;

 return m / t; // returns a reference to a temporary

}

template<typename T> auto silent_performance_bug(T const& t)

{

 T that = t * t; // may or may not be of type T

 return that;

}

10/21

Kiwaku

11/21

Kiwaku design - Overview

Scope reduction limits feature creep

● Monolithic designs are bound to fail
● Kiwaku design focuses on a small set of closely relates features...

Kiwaku's features

● Owning and non-owning containers (kwk::view, kwk::table) with proper allocators
● Slicing of containers (soon)
● Algorithmic skeletons for order n containers

Kiwaku's non-features

● No linear algebra
● No expression templates
● No computation 12/21

Kiwaku design

kwk::view

● Never owns any memory
● Wraps existing memory in a nD-array like interface
● Is designed to be as small as possible in 'resting position'

kwk::table

● Owns memory allocated via an allocator or on the stack
● Wraps said memory in a nD-array like interface
● Is designed to be as small as possible in 'resting position'

Two sides of the same coin

● A kwk::table is a kwk::view over the memory it owns
● Efficient kwk::view leads to efficient kwk::table 13/21

Kiwaku design

Supported options

● Kiwaku options are defined as orthogonal policies
● can be used as positional arguments in constructors
● options are exploited both at compile-time and run-time

Options Values

kwk::source pointers, static arrays, contiguous ranges

kwk::size kwk::of_size(dn...), integers are 1D-shapes

kwk::base_index kwk::index<i>, kwk::indexes<i0,i1,...>

kwk::label any string-like values

kwk::allocator any types modeling kwk::concepts::allocator
14/21

Conclusion

18/21

Conclusion

Current work

● Kiwaku on Github
● Allocators : adaptation of Alexandrescu's model
● Slicers : complete the implementation

Future of my PhD

● Support for tiling and non-trivial walkthrough (Morton, ...)
● Support for data locality in distributed computing scenarios
● Support for heterogenous platforms (GPU, FPGA, ...)
● Seamless integration with SYCL

19/21

https://github.com/jfalcou/kiwaku/

Thanks for your attention !

20/21

