
REPRISES Meeting
7 April 2022

Adaptive Precision Sparse Matrix–Vector
Product

and its Application to Krylov Solvers

Roméo Molina
LIP6, Sorbonne Université

Service Online, Département Informatique, IJCLab

Joint work with
Stef Graillat, Fabienne Jézéquel, and Theo Mary

1/19

Today’s floating-point landscape

Bits

Signif. (t) Exp. Range u = 2−t

bfloat16 B 8 8 10±38 4× 10−3

fp16 H 11 5 10±5 5× 10−4

fp32 S 24 8 10±38 6× 10−8

fp64 D 53 11 10±308 1× 10−16

fp128 Q 113 15 10±4932 1× 10−34

• Low precision increasingly supported by hardware

• Great benefits:
◦ Reduced storage, data movement, and communications
◦ Reduced energy consumption (5× with fp16, 9× with bfloat16)
◦ Increased speed on emerging hardware (16× on A100 from fp32 to

fp16/bfloat16)

• Some limitations too:
◦ Low accuracy (large u)
◦ Narrow range

2/19

Mixed precision algorithms

Mix several precisions in the same code with the goal of

• Getting the performance benefits of low precisions

• While preserving the accuracy and stability of high precision

Terminology varies: Mixed precision, Multiprecision, Adaptive
precision, Variable precision, Transprecision, Dynamic precision, . . .

How to select the right precision for the right variable/operation

• Precision tuning: autotuning based on the source code, my thesis
area: CADNA / PROMISE...

N Does not need any understanding of what the code does

H Does not have any understanding of what the code does

• This work: another point of view, exploit as much as possible
the knowledge we have about the code

3/19

Mixed precision algorithms

Mix several precisions in the same code with the goal of

• Getting the performance benefits of low precisions

• While preserving the accuracy and stability of high precision

Terminology varies: Mixed precision, Multiprecision, Adaptive
precision, Variable precision, Transprecision, Dynamic precision, . . .

How to select the right precision for the right variable/operation

• Precision tuning: autotuning based on the source code, my thesis
area: CADNA / PROMISE...

N Does not need any understanding of what the code does
H Does not have any understanding of what the code does

• This work: another point of view, exploit as much as possible
the knowledge we have about the code

3/19

Adaptive precision algorithms

• Given an algorithm and a prescribed accuracy ε, adaptively select
the minimal precision for each computation

⇒ Why does it make sens to make the precision vary?

• Because not all computations are equally “important”!
Example:

a
+ b

64 bits

Unimportant bits

and small elements produce small errors :

| fl(a op b)− a op b| ≤ u|a op b|, op ∈ {+,−, ∗,÷}

⇒ Opportunity for mixed precision: adapt the precisions to the
data at hand by storing and computing “less important” (usually
smaller) data in lower precision

4/19

Adaptive precision algorithms

• Given an algorithm and a prescribed accuracy ε, adaptively select
the minimal precision for each computation

⇒ Why does it make sens to make the precision vary?

• Because not all computations are equally “important”!
Example:

a
+ b

64 bits

Unimportant bits

and small elements produce small errors :

| fl(a op b)− a op b| ≤ u|a op b|, op ∈ {+,−, ∗,÷}

⇒ Opportunity for mixed precision: adapt the precisions to the
data at hand by storing and computing “less important” (usually
smaller) data in lower precision

4/19

Adaptive precision at the variable level?

• Pushing adaptive precision to the extreme: can we benefit from
storing each variable in a (possibly) different precision?

• Example: Ax = b with adaptive precision for each Aij

◦ Is it worth it?
Need to have elements of widely different magnitudes

◦ Is it practical?
Probably not for compute-bound applications, but could it work for
memory-bound ones?

⇒ Natural candidate: sparse matrices

5/19

Sparse matrix–vector product (SpMV)

y = Ax , A ∈ Rm×n

for i = 1: m do
yi = 0
for j ∈ nnz i (A) do

yi = yi + aijxj
end for

end for

• Standard error analysis for y = Ax performed in a uniform
precision ε gives,

|ŷi − yi | ≤ niε
∑

j∈nnz i (A)

|aijxj |

• Idea: store elements of A in a precision inversely proportional to
their magnitude (smaller elements in lower precision)

6/19

Adaptive precision SpMV

for i = 1: m do
yi = 0
for k = 1: p do

y
(k)
i = 0

for j ∈ nnz i (A) do
if aijxj ∈ Bik then

y
(k)
i = y

(k)
i + aijxj at precision uk

end if
end for
yi = yi + y

(k)
i

end for
end for

• Split row i of A into p buckets Bik and sum elements of Bik in
precision uk

• Error analysis: |ŷ (k)i − y
(k)
i | ≤ n

(k)
i uk

∑
aijxj∈Bik

|aijxj |

7/19

Building the buckets

• |ŷ (k)i − y
(k)
i | ≤ n

(k)
i uk

∑
aijxj∈Bik

|aijxj |

⇒ Build the buckets such that uk
∑

aijxj∈Bik
|aijxj | ≈ ε

∑
j |aijxj |

• By setting Bik to the interval (εβi/uk+1, εβi/uk], we obtain

|ŷ (k)i − y
(k)
i | ≤ n

(k)
i εβi and so |ŷi − yi | ≤ niεβi

• Two possible choices for βi :
◦ βi =

∑
j |aijxj | ⇒ guarantees O(ε) componentwise error:

|ŷi − yi | ≤ nε
∑

j |aijxj | ∀i ∈ {1, ..., n}
◦ βi = ‖A‖‖x‖ ⇒ guarantees O(ε) normwise error:
|ŷi − yi | ≤ nε‖A‖‖x‖

8/19

Visualise mixed-precision gains

Matrice dgreen

For some matrices, many elements can be dropped that leads to
major gains.

9/19

Visualise mixed-precision gains

Matrice imagesensor

For some matrices, many elements can be dropped that leads to
major gains.

9/19

Visualise mixed-precision gains

Matrice nv1

For some matrices, many elements can be dropped that leads to
major gains.

9/19

Visualise mixed-precision gains

Matrice nv2

For some matrices, many elements can be dropped that leads to
major gains.

9/19

Visualise mixed-precision gains

Matrice power9

For some matrices, many elements can be dropped that leads to
major gains.

9/19

SpMV experimental settings

• 34 matrices coming from SuiteSparse collection and industrial
partners with at most 166M non-zeros

• 3 different accuracy targets

Target u = 2−t

fp32 6× 10−8

"fp48" 8× 10−12

fp64 1× 10−16

10/19

SpMV experimental settings

• 34 matrices coming from SuiteSparse collection and industrial
partners with at most 166M non-zeros

• 3 different accuracy targets

Target u = 2−t

fp32 6× 10−8

"fp48" 8× 10−12

fp64 1× 10−16

10/19

SpMV experimental settings

Possibility to use

• 2 precisions: fp32, fp64

• 3 precisions: bfloat16, fp32, fp64

• 7 precisions: bfloat16, ”bfloat24”, fp32, fp64, ”fp40”, ”fp48”,
”fp56”

Bits

Mantissa Exponent

bfloat16 8 8
"bfloat24" 8 8
fp32 24 8
"fp40" 29 11
"fp48" 37 11
"fp56" 45 11
fp64 53 11

11/19

SpMV experiments

Maintaining componentwise accuracy

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33

Matrices

10 15

10 13

10 11

10 9

10 7

10 5

Er
ro

r

Uniform
2 precisions
3 precisions
7 precisions
fp32 target
fp48 target
fp64 target

Adaptive methods preserve an accuracy close to the accuracy of
uniform methods.

12/19

SpMV experiments

Maintaining normwise accuracy

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33

Matrices

10 20

10 18

10 16

10 14

10 12

10 10

10 8

10 6

Er
ro

r

Uniform
2 precisions
3 precisions
7 precisions
fp32 target
fp48 target
fp64 target

Adaptive methods preserve an accuracy close to the accuracy of
uniform methods.

12/19

SpMV experiments

Theoretical storage gains targetting FP64

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33

Matrices
0

20

40

60

80

100

St
or

ag
e

co
st

 w
rt

un
ifo

rm
 fp

64
 (%

)

Uniform fp64
NW, 2 precisions
NW, 3 precisions
NW, 7 precisions
CW, 2 precisions
CW, 3 precisions
CW, 7 precisions

Up to 88% of storage reduction

13/19

SpMV experiments

Actual time gains targetting FP64

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33

Matrices
0

20

40

60

80

100

120

Ti
m

e
wr

t u
ni

fo
rm

 fp
64

 (%
)

Uniform fp64
NW, fp64 target
CW, fp64 target

Up to 85% of time reduction

13/19

SpMV experiments

Theoretical storage gains targetting FP32

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33

Matrices
0

10

20

30

40

50

St
or

ag
e

co
st

 w
rt

un
ifo

rm
 fp

64
 (%

)

Uniform fp32
NW, 2 precisions
NW, 3 precisions
NW, 7 precisions
CW, 2 precisions
CW, 3 precisions
CW, 7 precisions

Up to 97% of storage reduction

14/19

SpMV experiments

Actual time gains targetting FP32

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33

Matrices
0

20

40

60

80

100

Ti
m

e
wr

t u
ni

fo
rm

 fp
64

 (%
)

Uniform fp64
Uniform fp32
NW, fp32 target
CW, fp32 target

Up to 88% of time reduction

14/19

SpMV experiments

Targetting any accuracy

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33

Matrices
0

20

40

60

80

100

St
or

ag
e

co
st

 w
rt

un
ifo

rm
 fp

64
 (%

)

Uniform fp48
NW, 2 precisions
NW, 3 precisions
NW, 7 precisions
CW, 2 precisions
CW, 3 precisions
CW, 7 precisions

We are able to target any kind of accuracy with only natively
supported precisions.

15/19

SpMV experiments

Targetting any accuracy

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33

Matrices
0

20

40

60

80

100

120

Ti
m

e
wr

t u
ni

fo
rm

 fp
64

Uniform fp64
Uniform fp32
NW, fp48 target
CW, fp48 target

We are able to target any kind of accuracy with only natively
supported precisions.

15/19

Plug SpMV into GMRES

Performance of GMRES rely on SpMV

r = b − Ax0
β = ‖r‖2
q1 = r/β
for k = 1, 2, . . . do

y = Aqk
for j = 1: k do

hjk = qTj y
y = y − hjkqj

end for
hk+1,k = ‖y‖2
qk+1 = y/hk+1,k

Solve the least squares problem minck ‖Hck − βe1‖2
xk = x0 + Qkck

end for

How does the adaptive method affect the convergence?

16/19

Application to GMRES: experimental settings

Assessing the potential of adaptive precision for GMRES is not
straightforward:

• Highly matrix dependent, need to cover a wide range of
applications

• For a given matrix, hard to know what a good accuracy is
◦ What storage precision?
◦ What tolerance threshold for GMRES convergence?
◦ Normwise or componentwise stable SpMV?
◦ How small should the error be?

• Comparison further muddled by possible use of
◦ Preconditioners
◦ Iterative refinement (i.e., restarted GMRES)

17/19

Application to GMRES: maintaining convergence scheme

Adaptive GMRES follows convergence shemes of uniform GMRES

0 20 40 60 80 100 120

Iteration

10 13

10 11

10 9

10 7

10 5

10 3

10 1

Er
ro

r

Uniform fp64
Uniform fp32
NW, target fp32
CW, target fp32
NW, target fp48
CW, target fp48
NW, target fp64
CW, target fp64

18/19

Application to GMRES: maintaining convergence scheme

Adaptive GMRES follows convergence shemes of uniform GMRES

0 20 40 60 80 100 120 140

Iteration

10 12

10 10

10 8

10 6

10 4

10 2

Er
ro

r

Uniform fp64
Uniform fp32
NW, target fp32
CW, target fp32
NW, target fp48
CW, target fp48
NW, target fp64
CW, target fp64

18/19

Application to GMRES: maintaining convergence scheme

Adaptive GMRES follows convergence shemes of uniform GMRES

0 50 100 150 200 250 300

Iteration

10 15

10 13

10 11

10 9

10 7

10 5

10 3

10 1

Er
ro

r

Uniform fp64
Uniform fp32
NW, target fp32
CW, target fp32
NW, target fp48
CW, target fp48
NW, target fp64
CW, target fp64

18/19

Conclusion: take-home messages

• Adaptive precision SpMV

• Application to Krylov solvers: significant reductions of the data
movement at equivalent accuracy

• Article in preparation

Thank you! Any questions?

19/19

