REPRISES Meeting

7 April 2022
Adaptive Precision Sparse Matrix-Vector Product and its Application to Krylov Solvers

Roméo Molina
LIP6, Sorbonne Université

Service Online, Département Informatique, IJCLab
Joint work with
Stef Graillat, Fabienne Jézéquel, and Theo Mary

Today's floating-point landscape

Bits

bfloat16	B	8	8	$10^{ \pm 38}$	4×10^{-3}
fp16	H	11	5	$10^{ \pm 5}$	5×10^{-4}
fp32	S	24	8	$10^{ \pm 38}$	6×10^{-8}
fp64	D	53	11	$10^{ \pm 308}$	1×10^{-16}
fp128	Q	113	15	$10^{ \pm 4932}$	1×10^{-34}

- Low precision increasingly supported by hardware
- Great benefits:
- Reduced storage, data movement, and communications
- Reduced energy consumption ($5 \times$ with $\mathrm{fp} 16,9 \times$ with bfloat16)
- Increased speed on emerging hardware ($16 \times$ on A100 from fp32 to fp16/bfloat16)
- Some limitations too:
- Low accuracy (large u)
- Narrow range

Mixed precision algorithms

Mix several precisions in the same code with the goal of

- Getting the performance benefits of low precisions
- While preserving the accuracy and stability of high precision

Terminology varies: Mixed precision, Multiprecision, Adaptive precision, Variable precision, Transprecision, Dynamic precision, ...

Mixed precision algorithms

Mix several precisions in the same code with the goal of

- Getting the performance benefits of low precisions
- While preserving the accuracy and stability of high precision

Terminology varies: Mixed precision, Multiprecision, Adaptive precision, Variable precision, Transprecision, Dynamic precision, ...

How to select the right precision for the right variable/operation

- Precision tuning: autotuning based on the source code, my thesis area: CADNA / PROMISE...
© Does not need any understanding of what the code does
$\boldsymbol{\nabla}$ Does not have any understanding of what the code does
- This work: another point of view, exploit as much as possible the knowledge we have about the code

Adaptive precision algorithms

- Given an algorithm and a prescribed accuracy ε, adaptively select the minimal precision for each computation
\Rightarrow Why does it make sens to make the precision vary?

Adaptive precision algorithms

- Given an algorithm and a prescribed accuracy ε, adaptively select the minimal precision for each computation
\Rightarrow Why does it make sens to make the precision vary?
- Because not all computations are equally "important"! Example:
a
$+b$

and small elements produce small errors :

$$
\mid \mathrm{fl}(a \text { op } b)-a \text { op } b|\leq u| a \text { op } b \mid, \quad \text { op } \in\{+,-, *, \div\}
$$

\Rightarrow Opportunity for mixed precision: adapt the precisions to the data at hand by storing and computing "less important" (usually smaller) data in lower precision

Adaptive precision at the variable level?

- Pushing adaptive precision to the extreme: can we benefit from storing each variable in a (possibly) different precision?
- Example: $A x=b$ with adaptive precision for each $A_{i j}$
- Is it worth it?

Need to have elements of widely different magnitudes

- Is it practical?

Probably not for compute-bound applications, but could it work for memory-bound ones?
\Rightarrow Natural candidate: sparse matrices

Sparse matrix-vector product (SpMV)

$$
y=A x, A \in \mathbb{R}^{m \times n}
$$

$$
\begin{aligned}
& \text { for } i=1: m \text { do } \\
& \quad y_{i}=0 \\
& \quad \text { for } j \in n n z_{i}(A) \text { do } \\
& \quad y_{i}=y_{i}+a_{i j} x_{j} \\
& \text { end for } \\
& \text { end for } \\
& \hline
\end{aligned}
$$

- Standard error analysis for $y=A x$ performed in a uniform precision ε gives,

$$
\left|\widehat{y}_{i}-y_{i}\right| \leq n_{i} \varepsilon \sum_{j \in n n z_{i}(A)}\left|a_{i j} x_{j}\right|
$$

- Idea: store elements of A in a precision inversely proportional to their magnitude (smaller elements in lower precision)

Adaptive precision SpMV

```
for \(i=1: m\) do
    \(y_{i}=0\)
    for \(k=1: p\) do
        \(y_{i}^{(k)}=0\)
        for \(j \in n n z_{i}(A)\) do
            if \(a_{i j} x_{j} \in B_{i k}\) then
                \(y_{i}^{(k)}=y_{i}^{(k)}+a_{i j} x_{j}\) at precision \(u_{k}\)
                end if
            end for
        \(y_{i}=y_{i}+y_{i}^{(k)}\)
    end for
end for
```

- Split row i of A into p buckets $B_{i k}$ and sum elements of $B_{i k}$ in precision u_{k}
- Error analysis: $\left|\widehat{y}_{i}^{(k)}-y_{i}^{(k)}\right| \leq n_{i}^{(k)} u_{k} \sum_{a_{i j} x_{j} \in B_{i k}}\left|a_{i j} x_{j}\right|$
- $\left|\widehat{y}_{i}^{(k)}-y_{i}^{(k)}\right| \leq n_{i}^{(k)} u_{k} \sum_{a_{i j} x_{j} \in B_{i k}}\left|a_{i j} x_{j}\right|$
\Rightarrow Build the buckets such that $u_{k} \sum_{a_{i j} x_{j} \in B_{i k}}\left|a_{i j} x_{j}\right| \approx \varepsilon \sum_{j}\left|a_{i j} x_{j}\right|$
- By setting $B_{i k}$ to the interval $\left(\varepsilon \beta_{i} / u_{k+1}, \varepsilon \beta_{i} / u_{k}\right]$, we obtain $\left|\widehat{y}_{i}^{(k)}-y_{i}^{(k)}\right| \leq n_{i}^{(k)} \varepsilon \beta_{i}$ and so $\left|\widehat{y}_{i}-y_{i}\right| \leq n_{i} \varepsilon \beta_{i}$
- Two possible choices for β_{i} :
- $\beta_{i}=\sum_{j}\left|a_{i j} x_{j}\right| \Rightarrow$ guarantees $O(\varepsilon)$ componentwise error: $\left|\widehat{y}_{i}-y_{i}\right| \leq n \epsilon \sum_{j}\left|a_{i j} x_{j}\right| \quad \forall i \in\{1, \ldots, n\}$
- $\beta_{i}=\|A\|\|x\| \Rightarrow$ guarantees $O(\varepsilon)$ normwise error: $\left|\widehat{y}_{i}-y_{i}\right| \leq n \epsilon\|A\|\|x\|$

Visualise mixed-precision gains

Matrice dgreen

For some matrices, many elements can be dropped that leads to major gains.

Visualise mixed-precision gains

For some matrices, many elements can be dropped that leads to major gains.

Visualise mixed-precision gains

For some matrices, many elements can be dropped that leads to major gains.

Visualise mixed-precision gains

Matrice nv2

For some matrices, many elements can be dropped that leads to major gains.

Visualise mixed-precision gains

For some matrices, many elements can be dropped that leads to major gains.

SpMV experimental settings

- 34 matrices coming from SuiteSparse collection and industrial partners with at most 166M non-zeros

SpMV experimental settings

- 34 matrices coming from SuiteSparse collection and industrial partners with at most 166M non-zeros
- 3 different accuracy targets

Target $u=2^{-t}$

fp32	6×10^{-8}
"fp48"	8×10^{-12}
fp64	1×10^{-16}

SpMV experimental settings

Possibility to use

- 2 precisions: fp32, fp64
- 3 precisions: bfloat16, fp32, fp64
- 7 precisions: bfloat16, "bfloat24", fp32, fp64, "fp40", "fp48", " fp56"

	Bits	
	Mantissa	Exponent
bfloat16	8	8
"bfloat24"	8	8
fp32	24	8
"fp40"	29	11
"fp48"	37	11
"fp56"	45	11
fp64	53	11

SpMV experiments

Maintaining componentwise accuracy

- Uniform
$\times 2$ precisions
- 3 precisions
v 7 precisions fp32 target fp48 target fp64 target

Adaptive methods preserve an accuracy close to the accuracy of uniform methods.

SpMV experiments

Maintaining normwise accuracy

Adaptive methods preserve an accuracy close to the accuracy of uniform methods.

SpMV experiments

Theoretical storage gains targetting FP64

Up to $\mathbf{8 8 \%}$ of storage reduction

SpMV experiments

Actual time gains targetting FP64

- Uniform fp64
\square NW, fp64 target
\square
CW, fp64 target

Up to $\mathbf{8 5 \%}$ of time reduction

SpMV experiments

Theoretical storage gains targetting FP32

Up to $\mathbf{9 7 \%}$ of storage reduction

SpMV experiments

Actual time gains targetting FP32

- Uniform fp64
------- Uniform fp32
\square NW, fp32 target
\square CW, fp32 target

Up to $\mathbf{8 8 \%}$ of time reduction

SpMV experiments

Targetting any accuracy

We are able to target any kind of accuracy with only natively supported precisions.

SpMV experiments

Targetting any accuracy

We are able to target any kind of accuracy with only natively supported precisions.

Performance of GMRES rely on SpMV

```
\(r=b-A x_{0}\)
\(\beta=\|r\|_{2}\)
\(q_{1}=r / \beta\)
for \(k=1,2, \ldots\) do
    \(y=A q_{k}\)
        for \(j=1: k\) do
        \(h_{j k}=q_{j}^{T} y\)
        \(y=y-h_{j k} q_{j}\)
        end for
        \(h_{k+1, k}=\|y\|_{2}\)
        \(q_{k+1}=y / h_{k+1, k}\)
        Solve the least squares problem \(\min _{c_{k}}\left\|H c_{k}-\beta e_{1}\right\|_{2}\)
        \(x_{k}=x_{0}+Q_{k} c_{k}\)
    end for
```

How does the adaptive method affect the convergence?

Application to GMRES: experimental settings

Assessing the potential of adaptive precision for GMRES is not straightforward:

- Highly matrix dependent, need to cover a wide range of applications
- For a given matrix, hard to know what a good accuracy is
- What storage precision?
- What tolerance threshold for GMRES convergence?
- Normwise or componentwise stable SpMV?
- How small should the error be?
- Comparison further muddled by possible use of
- Preconditioners
- Iterative refinement (i.e., restarted GMRES)

Application to GMRES: maintaining convergence scheme

Adaptive GMRES follows convergence shemes of uniform GMRES

——Uniform fp64
------- Uniform fp32
\rightarrow NW, target fp32
------- CW, target fp32
NW, target fp48
CW, target fp48
\rightarrow NW, target fp64
CW, target fp64

Application to GMRES: maintaining convergence scheme

Adaptive GMRES follows convergence shemes of uniform GMRES

——Uniform fp64
------- Uniform fp32
\rightarrow NW, target fp32
------- CW, target fp32
NW, target fp48
CW, target fp48
— NW, target fp64
CW, target fp64

Application to GMRES: maintaining convergence scheme

Adaptive GMRES follows convergence shemes of uniform GMRES

—— Uniform fp64
------- Uniform fp32
\rightarrow NW, target fp32
------ CW, target fp32
$-\quad$ NW, target fp 48 CW, target fp48
\because NW, target fp64
CW, target fp64

Conclusion: take-home messages

- Adaptive precision SpMV
- Application to Krylov solvers: significant reductions of the data movement at equivalent accuracy
- Article in preparation

Thank you! Any questions?

