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Today's floating-point landscape

Bits
Signif. (t) Exp. Range wu=2""
bfloati6 B 8 8 10t%¥  4x1073
fp16 H 11 5  10%° 5x 1074

fp128 Q 113 15 10!4!1! 1><10—I4

e Low precision increasingly supported by hardware

¢ Great benefits:

o Reduced storage, data movement, and communications
o Reduced energy consumption (5x with fp16, 9x with bfloat16)
o Increased speed on emerging hardware (16x on A100 from fp32 to
fp16/bfloat16)
e Some limitations too:

o Low accuracy (large u)
o Narrow range
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Mixed precision algorithms

Mix several precisions in the same code with the goal of
e Getting the performance benefits of low precisions

e While preserving the accuracy and stability of high precision

Terminology varies: Mixed precision, Multiprecision, Adaptive
precision, Variable precision, Transprecision, Dynamic precision, ...
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Mixed precision algorithms

Mix several precisions in the same code with the goal of
e Getting the performance benefits of low precisions

e While preserving the accuracy and stability of high precision

Terminology varies: Mixed precision, Multiprecision, Adaptive
precision, Variable precision, Transprecision, Dynamic precision, ...

How to select the right precision for the right variable/operation

¢ Precision tuning: autotuning based on the source code, my thesis
area: CADNA / PROMISE...

A Does not need any understanding of what the code does
Vv Does not have any understanding of what the code does

e This work: another point of view, exploit as much as possible
the knowledge we have about the code
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Adaptive precision algorithms

e Given an algorithm and a prescribed accuracy ¢, adaptively select
the minimal precision for each computation

= Why does it make sens to make the precision vary?
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Adaptive precision algorithms

e Given an algorithm and a prescribed accuracy ¢, adaptively select
the minimal precision for each computation

= Why does it make sens to make the precision vary?

e Because not all computations are equally “important™!
Example:

Unimportant bits

and small elements produce small errors :

[fl(aop b) —aopb| <ulaopb|,  op€ {+,—,* +}

= Opportunity for mixed precision: adapt the precisions to the
data at hand by storing and computing “less important” (usually

smaller) data in lower precision
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Adaptive precision at the variable level?

e Pushing adaptive precision to the extreme: can we benefit from
storing each variable in a (possibly) different precision?
e Example: Ax = b with adaptive precision for each Aj;

o Is it worth it?
Need to have elements of widely different magnitudes
o Is it practical?
Probably not for compute-bound applications, but could it work for
memory-bound ones?
= Natural candidate: sparse matrices

5/19



Sparse matrix—vector product (SpMV)

y = Ax, A€ R™x"
fori=1: mdo
yi=0
for j € nnz;(A) do
Yi =Yi+t ajX
end for
end for

e Standard error analysis for y = Ax performed in a uniform
precision € gives,

Zi—yil <me 30 ai
jennzi(A)

¢ ldea: store elements of A in a precision inversely proportional to
their magnitude (smaller elements in lower precision)
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Adaptive precision SpMV

fori=1: mdo
yi=0
for k=1: pdo
Yi(k) -0
for j € nnzi(A) do
if a;jx; € B then
y,.(k) = y,(k) + ajjx; at precision uj
end if
end for
vi=yi+y"
end for
end for

e Split row / of A into p buckets Bjx and sum elements of Bj in
precision uy

(K k k
e Error analysis: \yi( ) —yi( )| < n,( )”kza,-,-xjeB,-k |ajjxj]

7/19



Building the buckets

(k K K
¢ |yf( )_yi( )l < nI§ )ukZaiij'EB,-k |aijx; |

= Build the buckets such that ukzainjEBik 2| ~ e laixl

e By setting Bjx to the interval (¢/3;/uk41,20i/uk], we obtain
(K k k ~
|Y,-( ) }/,-( )| < ",( )eB; and so Vi — yil < niep;

e Two possible choices for j;:

o B = Zj |ajixj| = guarantees O(¢) error:
Vi = yil < ned;lajxl Vie{l,..n}
o B; = ||A|lllx]| = guarantees O(¢) error:

vi = yil < nel|AlllIx]|
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Visualise mixed-precision gains

Matrice dgreen
%10°

0
\ Il dropped
[ bfloatl6

2 I p32
I fp64
a

0 2 4 6 8 10 12
nz = 26606169 %105

For some matrices, many elements can be dropped that leads to
major gains.
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Visualise mixed-precision gains

Matrice imagesensor

o «<10*
Il dropped
[ Ibfloatl6

2 I p32
P64
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nz = 1446396 «10%

For some matrices, many elements can be dropped that leads to
major gains.
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Visualise mixed-precision gains

Matrice nvl

©10*

Il dropped
[ Ibfloatl6
I fp32
I fp64

nz = 1635003 %104

For some matrices, many elements can be dropped that leads to
major gains.
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Visualise mixed-precision gains

Matrice nv2

%10°

Il dropped
[ Ibfloatl6
N p32
I p64
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nz = 37475646 105

For some matrices, many elements can be dropped that leads to
major gains.
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Visualise mixed-precision gains

Matrice power9

0 %10%
Il dropped
[Ibfloatl6
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For some matrices, many elements can be dropped that leads to
major gains.
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SpMV experimental settings

e 34 matrices coming from SuiteSparse collection and industrial
partners with at most 166M non-zeros
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SpMV experimental settings

e 34 matrices coming from SuiteSparse collection and industrial
partners with at most 166M non-zeros

e 3 different accuracy targets

Target u=27"1

"fpag" 8§ x 10712
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SpMV experimental settings

Possibility to use

e 2 precisions: fp32, fp64

e 3 precisions: bfloatl6, fp32, fp64

e 7 precisions: bfloatl6, "bfloat24", fp32, fp64, "fp40”, "fp48”,

” fp56”
Bits
Mantissa Exponent
bfloat16 8 8
"bfloat24" 8 8
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SpMV experiments

Maintaining componentwise accuracy

ll!!!! 'x " Xu ‘.‘!;gil!!.l..l!xl ¢ Uniform

.0,..0..,o.,,“0.0.,,00.0000000000 x 2 precisions
e 3 precisions

5 :’::"illul *Q‘!:li:ll"!‘*:l MY v 7 precisions

Euwsl ¥ P e "PS | mmm fp32 target

[ fp48 target

o fp64 target
TSI P RR R RE IR RE RS AT A R PR

Adaptive methods preserve an accuracy close to the accuracy of
uniform methods.
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SpMV experiments

Maintaining normwise accuracy

L L T R TR P R ST T LA I P I & Uniform
$0000%009%,49,000%00000600000004000 x 2 precisions
o syt T332 1] = " e 3 precisions
AL A L AR SR ASE T LS HHHETH S I 7 orecisions
I fp32 target
- [ fp48 target
fp64 target

0 1 2 3 4 5 6 7 8 9 10111213 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33

Matrices

Adaptive methods preserve an accuracy close to the accuracy of
uniform methods.
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SpMV experiments

Theoretical storage gains targetting FP64

Uniform fp64

NW, 2 precisions
NW, 3 precisions
NW, 7 precisions
CW, 2 precisions
CW, 3 precisions
CW, 7 precisions

01 2 3 45 6 7 8 9 1011 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33

Matrices

Storage cost wrt uniform fp64 (%)

Up to 88% of storage reduction
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SpMV experiments

Actual time gains targetting FP64

I —— Uniform fp64
| H NW, fp64 target
m CW, fp64 target

Time wrt uniform fp64 (%)

0 1 2 3 4 5 6 7 8 9 10111213 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33

Matrices

Up to 85% of time reduction
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SpMV experiments

Theoretical storage gains targetting FP32

------- Uniform fp32

" NW, 2 precisions

B NW, 3 precisions

Hm NW, 7 precisions
CW, 2 precisions

B CW, 3 precisions

mmm CW, 7 precisions

0 1 2 3 45 6 7 8 9 10111213 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33

Matrices

Storage cost wrt uniform fp64 (%)

Up to 97% of storage reduction
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SpMV experiments

Actual time gains targetting FP32

—— Uniform fp64
------- Uniform fp32
EE NW, fp32 target
mm CW, fp32 target

Time wrt uniform fp64 (%)

0 1 2 3 4 5 6 7 8 9 10111213 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33

Matrices

Up to 88% of time reduction
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SpMV experiments

Targetting any accuracy

............. Uniform fp48
w NW, 2 precisions
| BE R NN W M E N T — mmm NW, 3 precisions
Il NW, 7 precisions
CW, 2 precisions
“ Bl CW, 3 precisions
I CW, 7 precisions

01 2 3 45 6 7 8 9 101112 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33

Matrices

Storage cost wrt uniform fp64 (%)

We are able to target any kind of accuracy with only natively
supported precisions.

15/19



SpMV experiments

Time wrt uniform fp64
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Targetting any accuracy

0 1 2 3 4 5 6 7 8 9 101112 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33

Matrices

—— Uniform fp64
Uniform fp32
HE NW, fp48 target
mm CW, fp48 target

We are able to target any kind of accuracy with only natively

supported precisions.



Plug SpMV into GMRES

Performance of GMRES rely on SpMV

r=>b— Axg
B =llrll2
q=r/8
for k=1,2,... do
y = Aqx
for j=1: k do
hix = qy
y =y — hjqg;
end for
hiy1,6 =yl
k1 = Y/ hky1,k
Solve the least squares problem min¢, ||[Hc, — Ber]|2
Xk = x0 + Quck
end for

How does the adaptive method affect the convergence?
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Application to GMRES: experimental settings
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Assessing the potential of adaptive precision for GMRES is not
straightforward:

e Highly matrix dependent, need to cover a wide range of
applications

For a given matrix, hard to know what a good accuracy is
o What storage precision?

o What tolerance threshold for GMRES convergence?

o Normwise or componentwise stable SpMV?

o How small should the error be?

e Comparison further muddled by possible use of

o Preconditioners

o |terative refinement (i.e., restarted GMRES)



Application to GMRES: maintaining convergence scheme

Adaptive GMRES follows convergence shemes of uniform GMRES

o4, o, —— Uniform fp64
‘\“‘:‘“‘M ------ Uniform fp32
Pterrrong,. —+— NW, target fp32
-+ CW, target fp32
NW, target fp48
CW, target fp48
—— NW, target fp64
CW, target fp64

Error

,,,,,

Iteration
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Application to GMRES: maintaining convergence scheme

Adaptive GMRES follows convergence shemes of uniform GMRES

— N —— Uniform fp64
'S “*--.....\‘. ------ Uniform fp32
—— NW, target fp32
5 -+ CW, target fp32
ul:_l . NW, target fp48
CW, target fp48
'''' —— NW, target fp64

CW, target fp64

9 %
Iteration
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Application to GMRES: maintaining convergence scheme

Adaptive GMRES follows convergence shemes of uniform GMRES

—— Uniform fp64
—————— Uniform fp32
—— NW, target fp32

——————— CW, target fp32
ws NW, target fp48
,,,,, CW, target fp48
—— NW, target fp64
"""" CW, target fp64

,,,,,

Iteration
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Conclusion: take-home messages

e Adaptive precision SpMV
e Application to Krylov solvers: significant reductions of the data
movement at equivalent accuracy

e Article in preparation

Thank you! Any questions?
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