
Fourth REPRISES F2F meeting
Amphi Charpak / Jussiu, Paris, April 8, 2022

Analyzing the impact of floating-point precision
adaptation in iterative programs

Talk presented at ARITH 2021

Guillaume Revy

Univ Perpignan Via Domitia, DALI, Perpignan, France
LIRMM, Univ Montpellier, CNRS (UMR 5506), Montpellier, France

Guillaume Revy (DALI UPVD / LIRMM, UM, CNRS) Analyzing the impact of floating-point precision adaptation in iterative programs 1/19

Context and achievement
Context

⊕ Various floating-point formats exist = different level of accuracy
I IEEE 754-2019 defines four formats: binary{16, 32, 64, 128}
I non IEEE formats: BFloat16, Posit, ...

	 Floating-point arithmetic is non-intuitive
I discrete and finite set of values→ 0.1 not exactly representable
I loss of arithmetic properties→ a+(b+ c) 6= (a+b)+ c

Over-sizing of the computation means→ binary64 by default

Precision tuning: technique to improve performance of numerical applications
I evaluate the impact of modifying the format of certain data

Achievement : a dynamic tool to evaluate the impact of adapting the format of
floating-point data in iterative programs

1. instrument programs with multiple-precision computations

2. split the iteration space of loops into several reduced subspaces

3. update the precision of some multiple-precision computations

Guillaume Revy (DALI UPVD / LIRMM, UM, CNRS) Analyzing the impact of floating-point precision adaptation in iterative programs 2/19

Motivating example (1/2)

Approximation of 1/2 using the Newton-Raphson method

ui+1 = ui · (2−2 ·ui), u0 = 0.05

double ui = .05, tmp1 , tmp2;
for(int i = 0; i < 9; i++) {

tmp1 = 2. * ui;
tmp2 = 2. - tmp1;
ui = ui * tmp2;

}

(binary64)

i ui (binary64) # significant bits ui (binary16) # significant bits
0 0.095000000000000001 0.30 0.09497070312500000 0.30
1 0.171950000000000020 0.61 0.17199707031250000 0.61
2 0.284766395000000010 1.22 0.28491210937500000 1.22
3 0.407348990557407980 2.43 0.40722656250000000 2.43
4 0.482831580898537500 4.86 0.48266601562500000 4.85
5 0.499410490771113100 9.73 0.49975585937500000 11.00
6 0.499999304957738090 19.46 0.49975585937500000 11.00
7 0.499999999999033880 38.91 0.49975585937500000 11.00
8 0.500000000000000000 53.00 0.49975585937500000 11.00

Guillaume Revy (DALI UPVD / LIRMM, UM, CNRS) Analyzing the impact of floating-point precision adaptation in iterative programs 3/19

Motivating example (1/2)

Approximation of 1/2 using the Newton-Raphson method

ui+1 = ui · (2−2 ·ui), u0 = 0.05

double ui = .05, tmp1 , tmp2;
for(int i = 0; i < 9; i++) {

tmp1 = 2. * ui;
tmp2 = 2. - tmp1;
ui = ui * tmp2;

}

(binary64)

tmp1 = 2. * ui;
tmp2 = 2. - tmp1;
ui = ui * tmp2;

(binary16)

i ui (binary64) # significant bits ui (binary16) # significant bits
0 0.095000000000000001 0.30 0.09497070312500000 0.30
1 0.171950000000000020 0.61 0.17199707031250000 0.61
2 0.284766395000000010 1.22 0.28491210937500000 1.22
3 0.407348990557407980 2.43 0.40722656250000000 2.43
4 0.482831580898537500 4.86 0.48266601562500000 4.85
5 0.499410490771113100 9.73 0.49975585937500000 11.00
6 0.499999304957738090 19.46 0.49975585937500000 11.00
7 0.499999999999033880 38.91 0.49975585937500000 11.00
8 0.500000000000000000 53.00 0.49975585937500000 11.00

Guillaume Revy (DALI UPVD / LIRMM, UM, CNRS) Analyzing the impact of floating-point precision adaptation in iterative programs 3/19

Motivating example (2/2)

0

10

20

30

40

50

60

1 2 3 4 5 6 7 8 9 10

#
si

gn
ifi

ca
nt

bi
ts

iterations

binary64
binary32
binary16

How to decide the computation format at each iteration?

Guillaume Revy (DALI UPVD / LIRMM, UM, CNRS) Analyzing the impact of floating-point precision adaptation in iterative programs 4/19

Outline of the talk

1. Background on LLVM and MPFR

2. Tool to analyze the impact of adapting data formats

3. Experimental results

4. Concluding remarks

Guillaume Revy (DALI UPVD / LIRMM, UM, CNRS) Analyzing the impact of floating-point precision adaptation in iterative programs 5/19

Background on LLVM and MPFR

Outline of the talk

1. Background on LLVM and MPFR

2. Tool to analyze the impact of adapting data formats

3. Experimental results

4. Concluding remarks

Guillaume Revy (DALI UPVD / LIRMM, UM, CNRS) Analyzing the impact of floating-point precision adaptation in iterative programs 6/19

Background on LLVM and MPFR

LLVM infrastructure

LLVM = compiler infrastructure and framework

Middle-end
LLVM optimizer

Front-end
(ie. clang for

the C language)

(1) Strongly typed IR
(2) SSA form

(3) Three-address

Transformations

Analyzes

Back-end
(code

generation)

C/C++

Fortran

Java

x86

ARM

Sparc

LLVM optimizer = series of "passes"
I analysis and optimization passes, run one by one

LLVM intermediate form = Virtual Instruction Set
I language- and target-independent form = same passes for all languages and targets

Guillaume Revy (DALI UPVD / LIRMM, UM, CNRS) Analyzing the impact of floating-point precision adaptation in iterative programs 7/19

Background on LLVM and MPFR

Floating-point arithmetic with MPFR

Floating-point arithmetic approximates real numbers

IEEE-754 floating-point number x is represented by a triplet (s,e,m)

x = (−1)s ·2e ·m0.m1 · · ·mp−1

I format = exponent range [emin,emax] + precision p→ defined by IEEE standard

MPFR = library for multiple-precision floating-point computations
1. a precision p is attached to each MPFR variable
→ emulates (non-)standard arithmetic

2. MPFR functions are of the form mpfr_op(dst, src1, src2, rnd)

→ fits the 3-address form of LLVM IR

%c = fadd double %a, %b ⇒ mpfr_add(c, a, b, MPFR_RNDN)

Guillaume Revy (DALI UPVD / LIRMM, UM, CNRS) Analyzing the impact of floating-point precision adaptation in iterative programs 8/19

Tool to analyze the impact of adapting data formats

Outline of the talk

1. Background on LLVM and MPFR

2. Tool to analyze the impact of adapting data formats

3. Experimental results

4. Concluding remarks

Guillaume Revy (DALI UPVD / LIRMM, UM, CNRS) Analyzing the impact of floating-point precision adaptation in iterative programs 9/19

Tool to analyze the impact of adapting data formats

Analysis tool workflow

Tool implemented as a pass in LLVM 10.0.0

It works on the LLVM IR of a program compiled with the lowest optimization level

.c
clang

loop
split

fp2mp
precision
update .ll

.json .config

.ll .ll .ll

I loop split = split the iteration space of loops into several reduced subspaces
I fp2mp = instrument program with multiple-precision computations
I precision update = update the precision of some multiple-precision computations

Guillaume Revy (DALI UPVD / LIRMM, UM, CNRS) Analyzing the impact of floating-point precision adaptation in iterative programs 10/19

Tool to analyze the impact of adapting data formats

Back to motivating example

(original)
double ui = .05, tmp1 , tmp2;
int i;

#pragma clang loop split_ratio (25)
for(i = 0; i < 9; i++) {

tmp1 = 2. * ui;
tmp2 = 2. - tmp1;
ui = ui * tmp2;

}

(instrumented)

Guillaume Revy (DALI UPVD / LIRMM, UM, CNRS) Analyzing the impact of floating-point precision adaptation in iterative programs 11/19

Tool to analyze the impact of adapting data formats

Back to motivating example

(original)
double ui = .05, tmp1 , tmp2;
int i;

#pragma clang loop split_ratio (25)
for(i = 0; i < 9; i++) {

tmp1 = 2. * ui;
tmp2 = 2. - tmp1;
ui = ui * tmp2;

}

(instrumented)

double ui = .05, tmp1 , tmp2;
int i, bnd = floor(9 * 25 / 100);

for(i = 0; i <= bnd; i++) {
tmp1 = 2. * ui;
tmp2 = 2. - tmp1;
ui = ui * tmp2;

}

for(; i < 9; i++) {
tmp1 = 2. * ui;
tmp2 = 2. - tmp1;
ui = ui * tmp2;

}

Guillaume Revy (DALI UPVD / LIRMM, UM, CNRS) Analyzing the impact of floating-point precision adaptation in iterative programs 11/19

Tool to analyze the impact of adapting data formats

Back to motivating example

(original)
double ui = .05, tmp1 , tmp2;
int i;

#pragma clang loop split_ratio (25)
for(i = 0; i < 9; i++) {

tmp1 = 2. * ui;
tmp2 = 2. - tmp1;
ui = ui * tmp2;

}

(instrumented)

double ui = .05, tmp1 , tmp2;
int i, bnd = floor(9 * 25 / 100);

mpfr_t Ui, M1, M2, Tmp1;
mpfr_inits2(53, Ui, Tmp1 , M1, M2);

mpfr_set_d(Ui, .05, MPFR_RNDN);

for(i = 0; i <= bnd; i++) {
tmp1 = 2. * ui;
tmp2 = 2. - tmp1;
// ...
mpfr_mul(M1, Ui, Tmp2 , MPFR_RNDN);
mpfr_set(Ui, M1, MPFR_RNDN);
ui = ui * tmp2;

}

for(; i < 9; i++) {
tmp1 = 2. * ui;
tmp2 = 2. - tmp1;
// ...
mpfr_mul(M2, Ui, Tmp2 , MPFR_RNDN);
mpfr_set(Ui, M2, MPFR_RNDN);
ui = ui * tmp2;

}

mpfr_clears(Ui, Tmp1 , M1, M2);

Guillaume Revy (DALI UPVD / LIRMM, UM, CNRS) Analyzing the impact of floating-point precision adaptation in iterative programs 11/19

Tool to analyze the impact of adapting data formats

Back to motivating example

(original)
double ui = .05, tmp1 , tmp2;
int i;

#pragma clang loop split_ratio (25)
for(i = 0; i < 9; i++) {

tmp1 = 2. * ui;
tmp2 = 2. - tmp1;
ui = ui * tmp2;

}

(instrumented)
double ui = .05, tmp1 , tmp2;
int i, bnd = floor(9 * 25 / 100);

mpfr_t Ui, M1, M2, Tmp1;
mpfr_inits2(53, Ui, Tmp1 , M2);
mpfr_t C1, C2;
mpfr_inits2(11, M1, C1, C2);

mpfr_set_d(Ui, .05, MPFR_RNDN);

for(i = 0; i <= bnd; i++) {
tmp1 = 2. * ui;
tmp2 = 2. - tmp1;
// ...
mpfr_set(C1, Ui, MPFR_RNDN);
mpfr_set(C2, Tmp2 , MPFR_RNDN);
mpfr_mul(M1, C1, C2, MPFR_RNDN);
mpfr_set(Ui, M1, MPFR_RNDN);
ui = ui * tmp2;

}

for(; i < 9; i++) {
tmp1 = 2. * ui;
tmp2 = 2. - tmp1;
// ...
mpfr_mul(M1, Ui, Tmp2 , MPFR_RNDN);
mpfr_set(Ui, M1, MPFR_RNDN);
ui = ui * tmp2;

}

mpfr_clears(Ui, Tmp1 , M1, M2, C1, C2);

Guillaume Revy (DALI UPVD / LIRMM, UM, CNRS) Analyzing the impact of floating-point precision adaptation in iterative programs 11/19

Tool to analyze the impact of adapting data formats

Back to motivating example

(original)
double ui = .05, tmp1 , tmp2;
int i;

#pragma clang loop split_ratio (25)
for(i = 0; i < 9; i++) {

tmp1 = 2. * ui;
tmp2 = 2. - tmp1;
ui = ui * tmp2;

}

rel_error→
∣∣∣Ui−ui

ui

∣∣∣

(instrumented)
double ui = .05, tmp1 , tmp2;
int i, bnd = floor(9 * 25 / 100);

mpfr_t Ui, M1, M2, Tmp1;
mpfr_inits2(53, Ui, Tmp1 , M2);
mpfr_t C1, C2;
mpfr_inits2(11, M1, C1, C2);

mpfr_set_d(Ui, .05, MPFR_RNDN);

for(i = 0; i <= bnd; i++) {
tmp1 = 2. * ui;
tmp2 = 2. - tmp1;
// ...
mpfr_set(C1, Ui, MPFR_RNDN);
mpfr_set(C2, Tmp2 , MPFR_RNDN);
mpfr_mul(M1, C1, C2, MPFR_RNDN);
mpfr_set(Ui, M1, MPFR_RNDN);
ui = ui * tmp2;

}

for(; i < 9; i++) {
tmp1 = 2. * ui;
tmp2 = 2. - tmp1;
// ...
mpfr_mul(M1, Ui, Tmp2 , MPFR_RNDN);
mpfr_set(Ui, M1, MPFR_RNDN);
ui = ui * tmp2;

}
printf("error= %Le\n", rel_error(ui));
mpfr_clears(Ui, Tmp1 , M1, M2, C1, C2);

Guillaume Revy (DALI UPVD / LIRMM, UM, CNRS) Analyzing the impact of floating-point precision adaptation in iterative programs 11/19

Tool to analyze the impact of adapting data formats

Loop splitting strategy

In LLVM IR, a loop is represented as a control flow graph

In the canonical form, a loop is as follows

i = min

preheader

header

exiting/latch
i < max

exit

Loops can be split in more than 2 loops

Loop bounds (i.e. min and max) are not computable in all cases

I insert counter to count first loop iteration numbers

Guillaume Revy (DALI UPVD / LIRMM, UM, CNRS) Analyzing the impact of floating-point precision adaptation in iterative programs 12/19

Tool to analyze the impact of adapting data formats

Loop splitting strategy

In LLVM IR, a loop is represented as a control flow graph

In the canonical form, a loop is as follows

i = min

preheader

header

exiting/latch
i < max

exit

2 loops

i = min
bnd = ...

preheader

header

exiting/latch
i < max

exit

Loops can be split in more than 2 loops

Loop bounds (i.e. min and max) are not computable in all cases

I insert counter to count first loop iteration numbers

Guillaume Revy (DALI UPVD / LIRMM, UM, CNRS) Analyzing the impact of floating-point precision adaptation in iterative programs 12/19

Tool to analyze the impact of adapting data formats

Loop splitting strategy

In LLVM IR, a loop is represented as a control flow graph

In the canonical form, a loop is as follows

i = min

preheader

header

exiting/latch
i < max

exit

2 loops

i = min
bnd = ...

preheader

header

exiting/latch
i < max

exit

preheader

header

exiting/latch
i < max

Loops can be split in more than 2 loops

Loop bounds (i.e. min and max) are not computable in all cases

I insert counter to count first loop iteration numbers

Guillaume Revy (DALI UPVD / LIRMM, UM, CNRS) Analyzing the impact of floating-point precision adaptation in iterative programs 12/19

Tool to analyze the impact of adapting data formats

Loop splitting strategy

In LLVM IR, a loop is represented as a control flow graph

In the canonical form, a loop is as follows

i = min

preheader

header

exiting/latch
i < max

exit

2 loops

i = min
bnd = ...

preheader

header

exiting/latch
i <= bnd

exit

preheader

header

exiting/latch
i < max

Loops can be split in more than 2 loops

Loop bounds (i.e. min and max) are not computable in all cases

I insert counter to count first loop iteration numbers

Guillaume Revy (DALI UPVD / LIRMM, UM, CNRS) Analyzing the impact of floating-point precision adaptation in iterative programs 12/19

Tool to analyze the impact of adapting data formats

Loop splitting strategy

In LLVM IR, a loop is represented as a control flow graph

In the canonical form, a loop is as follows

i = min

preheader

header

exiting/latch
i < max

exit

2 loops

i = min
bnd = ...

preheader

header

exiting/latch
i <= bnd

exit

preheader

header

exiting/latch
i < max

Loops can be split in more than 2 loops

Loop bounds (i.e. min and max) are not computable in all cases

I insert counter to count first loop iteration numbers

Guillaume Revy (DALI UPVD / LIRMM, UM, CNRS) Analyzing the impact of floating-point precision adaptation in iterative programs 12/19

Tool to analyze the impact of adapting data formats

Loop splitting strategy

In LLVM IR, a loop is represented as a control flow graph

In the canonical form, a loop is as follows

i = min

preheader

header

exiting/latch
i < max

exit

2 loops

i = min
bnd = ...

preheader

header

exiting/latch
i <= bnd

exit

preheader

header

exiting/latch
i < max

Loops can be split in more than 2 loops

Loop bounds (i.e. min and max) are not computable in all cases
I insert counter to count first loop iteration numbers

Guillaume Revy (DALI UPVD / LIRMM, UM, CNRS) Analyzing the impact of floating-point precision adaptation in iterative programs 12/19

Experimental results

Outline of the talk

1. Background on LLVM and MPFR

2. Tool to analyze the impact of adapting data formats

3. Experimental results

4. Concluding remarks

Guillaume Revy (DALI UPVD / LIRMM, UM, CNRS) Analyzing the impact of floating-point precision adaptation in iterative programs 13/19

Experimental results

Case of bounded loop (1/2)

Polynomial evaluation using Horner rule
I number of iterations = degree of polynomial

double
evaluate(double *a, int n, double x)
{

double res = a[n];
#pragma clang loop split_ratio(RATIO)

for(int i = n-1; i >= 0; i--)
res = res * x + a[i];

return res;
}

Function Degree Interval

log2(1+ x) 31 [−2−2;2−2]

exp(x) 26 [−2−1;2−1]

sin(x) 28 [−π/4;π/4]
sinh(x) 30 [−1;1]

erf(x)−1/2 32 [−1/4;1/4]

For each RATIO ∈ {0,5,10, · · · ,95,100}
I split the loop into two subloops
I evaluate the impact of modifying the format of the first subloop

How do evolve the error according to the splitting ratio?

Guillaume Revy (DALI UPVD / LIRMM, UM, CNRS) Analyzing the impact of floating-point precision adaptation in iterative programs 14/19

Experimental results

Case of bounded loop (1/2)

Polynomial evaluation using Horner rule
I number of iterations = degree of polynomial

double
evaluate(double *a, int n, double x)
{

double res = a[n];
#pragma clang loop split_ratio(RATIO)

for(int i = n-1; i >= 0; i--)
res = res * x + a[i];

return res;
}

Function Degree Interval

log2(1+ x) 31 [−2−2;2−2]

exp(x) 26 [−2−1;2−1]

sin(x) 28 [−π/4;π/4]
sinh(x) 30 [−1;1]

erf(x)−1/2 32 [−1/4;1/4]

For each RATIO ∈ {0,5,10, · · · ,95,100}
I split the loop into two subloops
I evaluate the impact of modifying the format of the first subloop

How do evolve the error according to the splitting ratio?

Guillaume Revy (DALI UPVD / LIRMM, UM, CNRS) Analyzing the impact of floating-point precision adaptation in iterative programs 14/19

Experimental results

Case of bounded loop (2/2)

2−50

2−45

2−40

2−35

2−30

2−25

2−20

2−15

0 20 40 60 80 100

m
ax

.
re

la
tiv

e
er

ro
r

% of iterations in binary32

log2(1+ x)
exp(x)
sin(x)

sinh(x)
erf(x)−1/2

2−50

2−45

2−40

2−35

2−30

2−25

2−20

2−15

0 20 40 60 80 100

m
ax

.
re

la
tiv

e
er

ro
r

% of iterations in binary16

log2(1+ x)
exp(x)
sin(x)

sinh(x)
erf(x)−1/2

Figure: Maximum relative error according to the percentage of iterations in binary32 or binary16.

Guillaume Revy (DALI UPVD / LIRMM, UM, CNRS) Analyzing the impact of floating-point precision adaptation in iterative programs 15/19

Experimental results

Case of unbounded loop (1/2)

Conjugate Gradient: method to solve the linear system Ax = b

1: r0 := p0 := b−Ax0, and k = 0
2: while‖rk‖ ≥ ε and k < maxiter do

3: αk :=
rT
k rk

pT
k Apk

4: xk+1 := xk +αk pk
5: rk+1 := rk −αk Apk

6: βk :=
rT
k+1rk+1

rT
k rk

7: pk+1 := rk+1 +βk pk
8: k = k +1
9: end while

In exact arithmetic, it converges in n iterations

But in floating-point arithmetic, the number of
iterations is linked to the precision of the
computations

Example: 494_bus matrix (Suite Sparse Matrix
Collection)
I ε = 10−6

I binary64 = 1315 iterations
I binary32 = 2494 iterations

How do evolve the number of iterations
when the precision in first subloop is lowered to binary32?

Guillaume Revy (DALI UPVD / LIRMM, UM, CNRS) Analyzing the impact of floating-point precision adaptation in iterative programs 16/19

Experimental results

Case of unbounded loop (2/2)

1700

1800

1900

2000

2100

2200

2300

2400

2500

2600

10 500 1000 1500 2000 2490

to
ta

l#
of

ite
ra

tio
ns

of iterations in binary32

494_bus

Figure: Total number of iterations according to the number of iterations in binary32, for the
conjugate gradient method on the 494_bus matrix of the Suite Sparse Matrix Collection.

Guillaume Revy (DALI UPVD / LIRMM, UM, CNRS) Analyzing the impact of floating-point precision adaptation in iterative programs 17/19

Concluding remarks

Outline of the talk

1. Background on LLVM and MPFR

2. Tool to analyze the impact of adapting data formats

3. Experimental results

4. Concluding remarks

Guillaume Revy (DALI UPVD / LIRMM, UM, CNRS) Analyzing the impact of floating-point precision adaptation in iterative programs 18/19

Concluding remarks

Concluding remarks

Contributions

Tool to analyze the impact of modifying the format of certain data in iterative
programs
I instrument LLVM IR with MPFR computations
I split loops to be able to modify the computation precision at certain iterations only

Current version is an automatic tool to analyze small programs

Future works

Validate this tool on larger real life applications

Extend this tool to evaluate the gain of performance of data format modification

Integrate this tool into a framework for precision tuning

Guillaume Revy (DALI UPVD / LIRMM, UM, CNRS) Analyzing the impact of floating-point precision adaptation in iterative programs 19/19

	REPRISES22
	Background on LLVM and MPFR
	Tool to analyze the impact of adapting data formats
	Experimental results
	Concluding remarks

