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Too early to give up on Supersymmetry!

— deep connection between internal and space-time symmetries
— unification with Gravity...

— ubiquity of flat directions of the scalar potential — inflationary
sectors.

— In its (next-to-)minimal versions, (N)MSSM, possible relations
between constraints from inflation (prediction of the scalar spectral
index, the power spectrum normalization, etc.), and constraints from
particle physics searches 7
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— a key correspondence between flat directions and gauge invariant
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(0) In fact also necessary
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— The (R,-conserving)MSSM potential has ~ 300 flat directions

a promising paradise for Inflation!
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SUSY flat directions
a flat direction:

o has to be lifted...
o and by not too much — slow-roll/enough e-folding to fit
observations

— three main lifting sources:
e renormalizable superpotential (MSSM)
e soft SUSY breaking masses (MSSM)
= effective non-renormalizable superpotential (beyond the MSSM)

The basic idea:

if F¢ = 8¢Wo =0 = O = 0 then the flat direction associated with @
is lifted by W©

complete MSSM classification, Gherghetta, Kolda,Martin, ‘96
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The saddle point MSSM-Inflation model

LI L,?Lf er [SU@B)exSU@2)xU(1)y gauge inv.] — 'LLe’ D-flat direction

Iy = (Sg) , Lj = (g) , ex = p, @ complex-valued
i#), a#B
® o ufd? d, [SU@B)exSU@)xU(1)y gauge inv.] — 'udd’ D-flat direction
i d? =dj = ¢, ¢ complex-valued
JeEll = lEE
— in fact also F-flat in the (R,-conserving)MSSM
— LLe or udd flat directions lifted by
Whle ~ (LLe)(LLe)/M? resp. WU ~ (udd)(udd)/M?>

[ but if Ry-violation is allowed — lifted by the renormalizable operators,
W ~ LLe resp. udd |




The saddle point MSSM-Inflation model
Inflation along these directions (Enqvist & collab. '06 +)




The saddle point MSSM-Inflation model
Inflation along these directions (Enqvist & collab. '06 +)

6

1 p)
‘/inflation = m¢\<,0\ 3 A)‘6M3

¢6
6M3
choose phases such that (¢ = o)

() ¢10

1
— <p¢2+ ConbUER Al A e

it
‘/inflation j5u; §m3>¢2 S |A|>‘W il )\2M6




The saddle point MSSM-Inflation model
Inflation along these directions (Enqvist & collab. '06 +)

6

1 p)
‘/inflation = m¢\<,0\ 3 A)‘6M3

¢6
6M3
choose phases such that (¢ = o)

() ¢10

1
— <p¢2+ ConbUER Al A e

1
Vinfiation = §mi¢2 e |A|>\W s A2M6

Things | do not understand




The saddle point MSSM-Inflation model
Inflation along these directions (Enqvist & collab. '06 +)

1
‘/inflation 5 §m?¢‘§0‘2 i (

¢6
6M3
choose phases such that (¢ = o)
v _ _1 2¢2_ |A|>\_6+)\2¢10
inflation — 2m¢ 6M3 M6

1
— <p¢2+ ConbUER Al A e

Things | do not understand




The saddle point MSSM-Inflation model
Inflation along these directions (Enqvist & collab. '06 +)

1
‘/inflation 5 —mi“P‘Q i (

¢6
6M3
choose phases such that (¢ = o)
v _ _1 2¢2_ |A|>\_6+)\2¢10
inflation — 2m¢ 6M3 M6

2 Lp¢2+2cos(69 +64)| AN

Things | do not understand




The saddle point MSSM-Inflation model
Inflation along these directions (Enqvist & collab. '06 +)

1
‘/inflation 5 —mi“P‘Q i (

¢6
6M3
choose phases such that (¢ = o)
T S |A|>\—6 +)\2¢10
inflation — 2m¢ 6M3 M6

2 Lp¢2+2cos(69 +64)| AN

Things | do not understand




The saddle point MSSM-Inflation model
Inflation along these directions (Enqvist & collab. '06 +)

1
‘/'mflation 5 §m?¢‘(p‘2 it (

1 5 5 ¢ p)
== §m<p¢ icos (BH 9A)|A|)\W RIE S
choose phases such that (¢ = o)

() 10

i
Vinflation o5 §m3>¢2 fiid |A|)‘W i )\QW

Things | do not understand
does it make a difference?




The saddle point MSSM-Inflation model
Inflation along these directions (Enqvist & collab. '06 +)

1
‘/'mflation 5 §m?¢‘(p‘2 it (

1 5 5 ¢ p)
== §m<p¢ icos (BH 9A)|A|)\W RIE S
choose phases such that (¢ = o)

() 10

i
Vinflation o5 §m3>¢2 fiid |A|)‘W i )\QW

Things | do not understand
does it make a difference? — redefine A but caution, relation with A;!




The saddle point MSSM-Inflation model
Inflation along these directions (Enqvist & collab. '06 +)

1
‘/'mflation = §m?¢‘(p‘2 T (

(§

i 2
== §m¢¢ + 2 cos(66,, +9A)|A|AW + N —

choose phases such that (¢ = o)

() 10

i
Vinflation o5 §m3>¢2 fiid |A|)‘W i )\QW

Things | do not understand
does it make a difference? — redefine A but caution, relation with A;!
— normalization ¢ — % ?




The saddle point MSSM-Inflation model
Inflation along these directions (Enqvist & collab. '06 +)

ik 6
‘/'mflation e== Emi‘SD‘Q Gt (A)\GQPW‘F]ZC) I

1 + 2¢10
= §m¢¢ -+ 2COS(60§0 aF 9A)|A|)\m -+ )\ W

choose phases such that (¢ = o)

() 10

i
Vinflation o5 §m3>¢2 fiid |A|)‘W i )\QW

Things | do not understand
does it make a difference? — redefine A but caution, relation with A;!

— normalization ¢ — % ? ouLfomL; +0,LlomL; +0,e)0ne, = 0,008

missing %.7




The saddle point MSSM-Inflation model
Inflation along these directions (Enqvist & collab. '06 +)

ik 6
‘/'mflation e== Emi‘SD‘Q Gt (A)\GQPW‘F]ZC) I

SsEeae 2 ¢10
= §m¢¢ +2COS(60§0+9A)|A|)\W +)\ W
choose phases such that (¢ = o)

() 10

i
Vinflation o5 §m3>¢2 fiid |A|)‘W i )\QW

Things | do not understand
does it make a difference? — redefine A but caution, relation with A;!

— normalization ¢ — % ? ouLfomL; +0,LlomL; +0,e)0ne, = 0,008

missing %.7
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The saddle point MSSM-Inflation model

1 (§ ¢10
Vinfiation = 3¢9 — A + A7

inflation 603 W’ ()\ > 0)

tree Bag 71 e
e has now a non-trivial minimum at ¢ = ¢ # 0.

— Adjust the parameters to make this minimum as shallow as possible
+ initial condition for the inflaton field ¢ to get slow-roll.

1/4
— exact saddle-point at ¢y = (Af/%’) with A = v/40my.

— relate |A| to the MSSM soft tri-linear couplings, e.g. |A| = cte x A;
— relate my to the MSSM soft scalar masses, e.g. m2 = §(m2 +m2_+m2)
— correlation between the inflation requirements/constraints and the

MSSM spectrum
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The Effective Potential

Improve the Potential — loop corrections — log % resummation.

VtT'ee jans 1m2¢2 aus |A|A 2 "l )\2¢_10
inflation — 9 [0) 6M3 M6

mg, = g (9), |A] = [Al(¢). A = A(9). ¢ = (%)

tree loop T ) o :
Vinflation = Vinflation < Slight’ shape modification
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2
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Relating A to the soft MSSM trilinear couplings

— Minimal SUGRA (minimal K&hler potential)
At the 'high’ scale:

i Z Pl m§/2‘¢a’2 + m3)2 (Z PoFp, + (A—3)W + h.c.)
& a

— soft terms in ¢13> and ¢¢ are thus related

A3 = Am3/2, A6 = (3 aF A)m3/2

— in the simplest calculable case (Polonyi superpotential)

A=3-V3= Ag= A36 ? used in the study

CAUTION: valid only for universal soft terms @ GUT !!
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The Renormalization Group Equations

Can be adapted from RPV results
(see e.g. Allanach, Dedes, Dreiner, Phys Rev D 69, 115002 (2004) )

udd:
tds:

167T ( U3)12 2X(_3g1_8g3+221 l(YDm)2+2(YU33) )(AU3)

16772% (Ays)i2=2x (8 g2 M1+16g3M3+4 57 o (YD, 2+H4Ay o, (Yo 55)?)

tsh:
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The Renormalization Group Equations

LLe:
LeLyT:

1672 & (A g3)12=2% (— 297 —3¢3+ 371 (Y5 ;)2 +2(Yi 33)?) (A g3 )12

1672 L (A 13)12=2x (28 g2 M1+693 Ma+2 37| A, (Yi,,)2 +4AE 33 (Ya4,)?)

Ll

1672 L (A 3)23=2x (= 297393 +(Yi 5,)?+4(Y 35)%) (A g3)23

16724 (A g3)23=2% (2 g2 M1+693 Ma+2A5 5, (Yir 5,2 +TAg 33 (Vi 53) 2+ A By, (Ya 35)?)




Implemented in SUSPECT3

Maur Inflation EWSB My
| I I L
~ 1018GeV  ~ 10'4GeV ~ 103GeV 91GeV




Conclusion

o although (particularly) fine-tuned, the saddle-point MSSM inflation
is an interesting set-up — relates high scale inflation to low scale
particle physics.

o the on-going collaboration: brings together exp & theo/cosmo &

particle, expertise and related analysis tools
(ASPIC/SuSpect3/SFitter)

o new results (see Gilles talk)




