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One Functional Equation

Unrestricted paths

NN,

B(z) =14+ 2zB(z)

—>

N\ \ /\ /

B(z) = (polar singularity)

1 -2z

by = [2"]B(z) = 2"




One Functional Equation

Dyck paths

N AN

B(z) =1+ 22 B(2)?

1— /1 — 422
222

B(z) = (squareroot singularity)
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bon = [22"1B(2) = ~(7) ~ \[;”_3/22"




One Functional Equation

Non-negative lattice paths

r VAV \A‘=1=

A

fni --- number of non-negative paths from (0,0) — (n,1)

[i() = 3 fai? Fw) =3 fi(u' = Y friu

n>0 1>0 n,1>0

fo(z) =1+ zf1(2),
fi(z) = z2fi—1(z) + 2fi31(z) (1>1)

F(z,u) — F(z,0)

u

F(z,u) =14 zuF(z,u) + z

u ... ‘‘catalytic variable”



One Functional Equation

Non-negative lattice paths

1— /1 — 422

F(z,0) = 5.2

(squareroot singularity)

1,2 8
fono = [2°"]F(2,0) = _( n) ~ \Fn_3/22”
n--mn T




One Functional Equation

Planar Maps

N

M, . ... number of planar maps with n edges and outer face valency k

M(z,u) =) Mn)kznuk
n,k



One Functional Equation

Planar Maps

uM (z,u) — M(z, 1).

M(z,u) =1+ 2u’M(z,u)? + uz 1
U —

u ... ‘‘catalytic variable”

M(z,1) = —

54 52 <1 — 18z —|(1 - 122)3/2 ) (3/2-singularity)
z

Mn = ["]M(z,1) = (n + 2)n! NG




One Functional Equation

One positive linear equation
Theorem 1. Polar singularity:

Qo(z), Q1(z) ... polynomials with non-negative coefficients.

B(z) = Qo(z) + 2Q1(2)B(z)

—> |bp =[2"]B(2) ~cj 25", n=jmodm

for j €{0,1,...,m — 1} and some m > 1.
zo > 0 is given by z0Q1(z0) = 1.

Remark. Proof is simple analysis of B(z) = Qg(z)/(1 — zQ1(2)).



One Functional Equation

One positive non-linear equation
Theorem 2. [Bender, Canfield, Meir+Moon, ...] Squareroot sing.:

Q(z,y) ... polynomial with non-negative coefficients and Q(0,0) =0
and Qyy # 0.

B(z) = Q(z, B(?))

—> |bp = [2"]B(z2) ~c- n_3/2zan. ., n = jo modm,

and by, = 0] for n # j0 mod m, where m > 1.
zo > 0O satisfies bg = Q(z0,bp) and 1 = Qy(zg,bg) for some bg > 0.

Remark. Proof is based on the analysis of the singular point (zq, bg)
of the curve b = Q(z,b) that leads to the squareroot singularty B(z) =

g(2) — h(2)\/1 — /0.




One Functional Equation

One positive linear catalytic equation

Theorem 3. [D.4+Noy+Yu] Squareroot singularity:

Qo(z,u),Q1(z,u),Q>(z,u) ... polynomials with non-negative coeffi-

cients such that @1, 7 0 and u/Q>.

M(z,u) — M(z,0)

Q2(z,u)

M(z,u) = Qo(z,u) + 2M(2z,u)Q1(z,u) + =z

—> | My, = ["]M(2,0) ~c- n_3/2z8n

, N =jo Modm,

(for some constants c¢,zg > 0) and | M, =0
m > 1.

for n £ 50 mod m, where



One Functional Equation

One positive non-linear catalytic equation

Theorem 4. [D.4Noy+Yu] 3/2-Singularity:

Q(yo,y1,z,u) ... polynomial with non-negative coefficients that is
non-linear in yg,y1 (and depends on yg,y1) and Qg(uw) a non-negative

polynomial in w.

M(z,u) = Qo(u) + 2Q (M(Z,U),

M(z,u) — M(z,0) . u)

—> | M, = ["]M(2,0) ~c- n_5/2zan.

, N =7jo Modm,

(for some constants ¢,zg > 0) and |M,, =0
m > 1.

for n £ 50 mod m, where



System of Functional Equations

Q1,..-.-Qq --- polynomials with non-negative coefficients.

y1 =y1(2),...

Recall that if

yYd = Ya(z) .

d=1

Yyl — Ql(zayla S 7yd)7
vi = Qq(z,y1,---,Yd)-

then the single equation

solution of the system:

y = Q(2,y)

has either

a polar singularity (if it is linear) or a squareroot singularity (if it is

non-linear).

Question. What happends for|d > 1| 77




Systems of functional equations

Strongly connected dependency graph

Theorem 5 [D., Lalley, Woods]

y = Q(z,y)| ... non-negative (and well defined) polynomial system
of d > 1 equations such that the dependency graph is strongly con-
nected.

Then the situation is the same as for a single equation.

It the system is linear then we have a common polar singularity and

~

[2"]y1(2) ~c¢j- 25" n =7 mod m

whereas if it is non-linear then we have a squareroot singularity and

[2"y1(2) ~ ¢- n_3/226n. , N = jo modm.




Systems of functional equations

General dependency graph

Theorem 6 [Banderier+D.]

y = Q(z,y)| ... non-negative (and well defined) polynomial system
of equations.

—  |[2"]y1(2) ~¢cjn™ pj_n (n =7 mod m),

for j€{0,1,...,m — 1} for some m > 1, where

a; € {—27F-1:k>13u{m27"~1:m>1,k>0}|




T heorem 3: Kernel Method

M(z,u) — M(z, O)QQ(Z, 0

M(z,u) = Qo(z,u) + z2M(z,u)Q1(z,u) + 2

rewrites to

M(zw) (1= 2Q1(2w) — ~Qa(2w) ) | = Qolz,u) = - M(2,0)Qa(z,u).

If u = u(z) satisfies the kernel equation

<
1 —2Q1(z,u(2)) — Q2(z,u(z)) =0
u(z)
Then the right hand side is also zero and we obtain
Qo(z,u(2))

M(z,0) =

1 —2Q1(z,u(2))



T heorem 3: Kernel Method

T he kernel equation

1 —2Q1(z,u(2)) —

Z

Q2(z,u(z)) =0

rewrites to

u(z) = 2Q2(z,u(2)) + zu(2)Q1(z,u(z))

By Theorem 2 we, thus, obtain a squareroot singularity for u(z)
which implies a squareroot singularity for

Qo(z,u(z))
1 —2Q1(z,u(z))

M(z,0) =



Theorem 4: Bousquet-Melou—Jehanne Method

Let P(xp,x1,2,u) be an analytic function such that (y(z) = M(z,0))

P(M(z,u),y(z),z,u) = 0.

By taking the derivative with respect to u we get

Pro(M(z,u),y(2),z,u) Muy(z,u) + Pu(M(z,u),y(2),2z,u) =0,

Key observation:

FJu(z) : Peg(M(2,u(2)),y(2),z,u(z)) = 0= Pu(M(2,u(2)),y(2),z,u(z)) =0

Thus, with f(z) = M(z,u(z)) we get the system for f(z2),y(z),u(z)

P(f(2),y(2),z,u(z)) =0
Pro(f(2),y(2),2,u(z)) =0
Pu(f(2),y(2),z u(z)) = 0.



Theorem 4: Bousquet-Melou—Jehanne Method

Set (as given in our case)

P(z0,z1,2,u) = Qo(u) + 2Q(zo, (zo — 1) /u, z,u) — zo.

Then the system P =0, Py =0, P, =0 rewrites to

f(2) = Qo(u(z)) + 2Q(f(2),w(2), z,u(z)),

u(z) = 2u(2)Qyo (f(2), w(2), z,u(2)) + 2Qy; (f(2), w(2), z,u(2)),

w(z) = Qou(u(z)) + 2Qu(f(2), w(z), z,u(2)) + 2w(2)Qyo (f(2), w(2), z,u(z)),
where

_ &) -y

wlz) =700

This is a positive strongly connected polynomial system.



Theorem 4: Bousquet-Melou—Jehanne Method

Thus, by Theorem 5 the solution functions f(z),u(z),w(z) have a
squareroot singularity at some common singularity zp:

A

f(z) = g1(2) = h1(2),/1 — —,

20
u(z) = go(2) — hp(2), /1 — —O
w(z) = ga(z) — ha(z),/1 — —O

—> y(z) = f(2) —u(z)w(z) has also a squareroot singularity at zg

— L\ 3/2
y(z) — 94(z) h4(2) l—— = CLQ—|—CL11 / 1 — %—I-CLQ (1 — —) —|—a3 (1 — %> +- .

but maybe there are cancellations of coefficients a; (and actually
this happens!!!):. we have a1 = 0| and |a3 > 0|




Bousquet-Melou—Jehanne Method — General
Case

1St difference

M(z,u) = Qo(u) + 2QQ (M(z, u), M(z,u) ; Mz, O>,z, u)

Higher differences

M(z,u) = Qo(u) + 2QQ (M(z, u), A(l)(z,u), el A(d)(z, u), 2, u)

where
M (z,u) — M(z,0) — My(2,0)u —--- — M _;-1(z,0)u/ "1

uJ

AW (2 4) =

Theorem (Bousquet-Melou—Jehanne). Such an equation has always
an algebraic solution.



Kernel Method for the Linear Case (d = 2)

M(z,u) — M(z, O)Qg(z, 0

M(z,u) = Qo(z,u) + zM(z,u)Q1(z,u) + 2

zM(Z, u) — M(ZQO) — My(z, O)UJQ:&(Z7 )

_|_

rewrites to

M(zw) (1-2Q1(20) = ZQa(z,u) = 5Qa(zw))

= Qolzuw) = M(2,0) (2Qa(2,u) + 5Q3(2,u) ) — Mu(20)-Q3(2w)

Here two functions u = u1(z) and u = us(2) satisfy the kernel equa-
tion
< <

1 —2Q1(2,u(z)) — Q2(z,u(z)) — 5Q3(z,u(z)) =0

The right hand side is then zero for u = u1(2) and u = u>(z) which is
a linear system for M(z,0) and My(z,0)




Kernel Method for the Linear Case (d = 2)

The kernel equation for u = uq(z) and u = us(2)

1 —2Q1(z,u(2)) — Q3(z,u(z)) =0

< <

u(Z)QQ(Z, uy2(2)) — w(2)2

rewrites to

u(2)? = w(2)%2Q1(2,u(2)) + 2u(2)Q2(2,u1,2(2)) + 2Q3(2,u(2))

or to

uy1(z) = \/ZU1(2)2Q1(27 u1(2)) + 2u1(2)Q2(z,u1(2)) + Qa(z,u1(2))

u(z) = —\/ZU2(Z)2Q1(Z, up(2)) + zu2(2)Q2(z,u2(2)) + Qa(z,u2(z))

We lose the property that u1(z) and us(z) have just non-negative
coefficients and it is not clear that there is a squareroot singularity.



Bousquet-Melou—Jehanne Method for the Non-
linear Case

Let P(xg,x1,22,2,u) be an analytic function such that

P(M(z,u),yo(z),yl(z),z,u) = 0.

By taking the derivative with respect to u we get

PIBO(M(Z7U)7yO(Z)7y1(Z)7Zau) 'Mu(zau)_l_PU(M(Z)u)?yO(Z)7y1(Z)7Z7u) = 0.

Key obervation:

PZCO(M(Z7U(Z)>7 yO(z)vyl(z)7 2y u(z)) =0 — PU(M('Z?U(Z)>7 yO(z)ayl(z)a Zy ’U,(Z)

We need two functions uj(z) and ux(z). Setting f;(z) = M(z,u;(z))
we get the system for | f1(z), f2(2),y0(2),y1(2),u1(2),u2(2)

P(f1(2),y0(2),y1(2),2,u1(z)) =0, P(f2(2),y0(2),y1(2),z,u2(z)) =0

Pxo(fl(Z),yo(Z),y]_(Z),Z,U]_(Z)) — 07 Pg;o(fQ(Z),yO(Z),y]_(Z),Z,’UQ(Z)) =0
Pu(f]_(Z),yo(Z),yl(Z’),Z,ul(Z)> = 0, Pu(fQ(Z),yO(Z),yl(Z),Z,UQ(Z)) =0




Bousquet-Melou—Jehanne Method for the Non-
linear Case

Set (as given in our case)

P(xg, 1,72, 2,u) = Qo(u) + 2Q(zq, (xg — 1) /u, (xg — 1 — uz3)/u®, 2,u) — 0.

Then the above system rewrites to

f12(2) = Qo(u1 2(2))+
f12(2) = M(2,0) f12(2) — M(2,0) —u1 2(2)Mu(z,0)
+ZQ(f1,2(Z)a w12(2) : u1.2(2)2
u1 2(2)% = 2u1 2(2)?Quo (- -+ ) + 2u1 2(2)Qy, -+ ) + 2Qy, (- +),
f12(z) — M(2,0)

y 2 U]_’Q(Z)),

Qou(u12(2)) = w1 0(2) (1 — 2Qyo(--+)
| h2(x) - M(2,0) - n2(Mu(0)y )
u1 2(2)

This cannot be rewritten into a positive strongly connected poly-
nomial system.



Second Differences: The Linear Case

Theorem 3’. [D.4+Hainzl] Squareroot singularity:

Qo(z,u),Q1(z,u),Q>(z,u),Q3(z,u) ... polynomials with non-negative
coefficients (+ some technical conditions).

M(z,u) — M(z,0)

M(z,u) = Qo(z,u) + 2M(z,u)Q1(z,u) + 2 Q2(z,u)

ZM(z, w) — M(2,0) — My(z,u)u

u2

+ Q3(z,u)

— | M, = [2"]M(2,0) ~c- n_3/2z6n. , N = 7jg modm,

(for some constants ¢,zg > 0) and |M,, = 0| for n Z jop mod m, where
m > 1.




Second Differences: The Non-linear Case

Theorem 4’. [D.4Hainzl] 3/2-Singularity:

Q(o,y1,Yy2,2,u) ... polynomial with non-negative coefficients that is
non-linear in yg,y1,y> (+ some technical conditions).

M(z,u) = Qo(u)

+ z2Q) (M(z, u),

M(z,u) — M(2,0) M(z,u) — M(z2,0) — My(z,0)u : u)
; 02 Y

— an[zn]M(Z,O)Nc-n_S/Qzan., n = jo mod m,

(for some constants c¢,zg > 0) and | M, = 0| for n Z jo mod m, where
m > 1.




Applications

One-dimensional non-negative lattice path with steps +1 and +2

Eo(z) = 1+ 2(E1(2) + E2(2)),

E1(z) = 2(Eo(2) + E1(2) + E2(2)),

Ep(z) = 2(Ei_2(2) + Ep_1(2) + Ep41(2) + Epy2(2)) (k> 2),
which gives for E(z,u) = Yp>0 Ei(2)uf
E(z,u) — E(z,0)

u

E(z,u) =1+ z(u+uv)E(z,u) + 2
ZE(z,u) — F(2,0) — uEy(u, O).

u2

_|_



Applications

3-Constellations in Eulerian Maps
M(z,u) T M(Za 1)

M(z,u) = 14 zuM(z,u)> 4+ zu(2M (z,u) + M (2, 1)) ]

M(z,u) — M(z,1) — My(z,1)(u—1)
(u—1)2

+ zu

Remark. There are many equations of this type in the context of map
enumeration (even more generally with higher differences)



Higher Differences

Conjecture

Consider a catalytic equation with higher differences:

M(z,u) = Qo(u) + 2Q (M(z, u), A(l)(z,u), el A(d)(z, u), 2, u)

where Qg and @ have non-negative coefficients (4+ some technical
conditions)

e If Q is linear in yo,y1,...,yg then M(z,0) has a squareroot singu-
larity

e If Q is non-linear in yo,y1,- ..,y then M(z,0) has a 3/2-singularity



T heorem 3’: Proof Ideas for the Linear Case

Set
R(z,u) = 2u®Q1(z,u) + 2uQ2(z, u) + Q3(2, w)

Then the kernel equation for u = uj »(z) reads as

u? = R(z,u)

Ansatz

ui(z) = g(z) + \/h(z) uz(z) = g(z) — \/h(2)




Proof Ideas for the Linear Case

= (g Vh)2=g°4+h+Vh2g

R(z,g £ vVh) =3 Rp(2)(g £ Vh)¥
k
k
=S R Y ()" 12
k j=0

=Y R ())d" %hﬁiﬂZRk(@(
k.l

) k— 26—1h£
2041

=|RT(2,9,h) £ Vh-R (2,g,h)

u’ = R(z,u) = g¢°+h=RT(2,9,h), 29=R (2,9,h)



Proof Ideas for the Linear Case

T he kernel equation

u? = R(z,u)
rewrites to
g° +h=RY(z,g,h), 29 = R (z,9,h)
or to
h=RT(zg,h) - g7 g= %R_(z,g, h)

This is not a positive system!



Proof Ideas for the Linear Case

Lemma

The functions [g(2) |, |h(2)

have the following properties:

e they have non-negative coefficients

e they have a common squareroot singularity zg

e the function us(z) = g(z) — /h(2) is regular at zg

Corollary. The functions
gularity at zg, too.

M(z,0)

My (z,0)

have a squareroot sin-



Additional Parameters

Number of vertices in planar maps

M(z,z,u) ... generating function of rooted planar maps, where the
variable z corresponds to the number of edges, x to the number of
vertices and u to the root face valency.

M(z,z,1) —uM(z,x,u)

1—u

M(z,z,v) =z + 2zu°M (2, z,u)° + 2u

Xn ... humber of vertices in a random planar map with n edges
Central Limit Theorem

X, satisfies a central limit theorem with E[X,] = 3n + O(1) and
Var[Xn] = £5n + O(1).



Additional Parameters

T heorem 7

Suppose that M(z,z,u) and My(z,x) are the solutions of the catalytic
equation

P(M(Z,QZ,U),M]_(Z,%),Z,CE,U) =0 )

where the function P(xq,x1,2,z,u) is analytic and M7(z,1) has a sin-
gularity at z = zg of the form

- - 3/2
Ml(zal):y0+y2<1__>+y3<1__> +
20 20

with y3 #%= 0 (4 some technical conditions)

Then Mq(z,z) has a local singular representation of the form

e 5 3/2
Ml(Z,CB) = ao(CIZ) —+ CLQ(CU) (1 — p(a:)) -+ a3(:13) (]_ — p(:c>> + ...

Corollary. Hwang's Quasi-Power-Theorem leads then to a Central
Limit Theorem



Additional Parameters

Vertices of degree £ in planar maps

M(z,z,u) ... generating function for rooted planar maps, where z
corresponds to the number of edges, x to the number of non-root
faces of degree k, and u to the root-face degree

M(z,z,u) (1 — z(x — 1)u_k+2)

uM(z,z,u) — M(z,2,1)
u—1

—2(x — Du "G (2,2, M(2,2,1),u),

=1+ 2u’M(2,z,u) + 2u

where G(z,z,y,u) is a polynomial of degree kK —2 in u with coefficients
that are analytic functions in (z,xz,y) for |z| < 1/10, |z —1| < 217k and
ly| < 2.



Additional Parameters

Pure k-gons in planar maps

We say that a face is a pure k-gon (k > 2) if it is incident exactly to k
different edges and k different vertices.

P(z,z,u) ... generating function for rooted planar maps, where z cor-
responds to the number of edges, x to the number of non-root faces
that are pure k-gons, and u to the root-face degree.

uP(z,z,u) — P(z,2,1)
u—1
—2(z — DuF2G (2, 2, P(2, 2, 1), ),

P(z,x,u) =1+ 20°P(z,z,u) + 2u

where G(z,z,y,u) is a polynomial of degree k — 2 in v with coefficients
that are analytic functions in (z,z,y) for |z| < 1/10, |z —1| < 217%, and
lyl < 2.



Additional Parameters

Vertices of degree Lk in simple planar maps

S(z,xz,u) ... generating function for simple rooted planar maps, where
z corresponds to the number of edges, x to the number of non-root
vertices of degree k, and u to the root-face degree.

— 1
S(z,x,u) =14 ZU/QS(Z,w,’u,) + Zuus(zaxau) 1S(Z,CC, )
u P

—zuS(z,z,u)S(z,2,1) — (S(z,z,u) — 1)(S(z,z,1) — 1)

+ (z—1) (zuk+25(z, x,u)G1(z,2,S(z,z,1),u)
—zuS(z,z,u)Go(z,2,5(z,2,1))
— (S(z,z,u) — 1)G3(z,z,S(z,x, 1))),
where G1(z,x,y,u) is a polynomial of degree k—2 in u with coefficients
that are analytic functions in (z,z,y) for |z| < 2/25, |z — 1| < 27k—5,

and |y — 1| < 2/5. Similarly properties hold for the functions Gx(z, z,y)
and Gz(z,x,v).



T hank You!



