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One Functional Equation

Unrestricted paths

= + +

B(z) = 1 + 2zB(z)

B(z) =
1

1− 2z
(polar singularity)

bn = [zn]B(z) = 2n



One Functional Equation

Dyck paths

= +

B(z) = 1 + z2B(z)2

B(z) =
1−

√
1− 4z2

2z2
(squareroot singularity)

b2n = [z2n]B(z) =
1

n

(2n
n

)
∼
√

8

π
n−3/22n



One Functional Equation

Non-negative lattice paths

i=1

fn,i ... number of non-negative paths from (0,0)→ (n, i)

fi(z) =
∑
n≥0

fn,iz
i F (z, u) =

∑
i≥0

fi(z)ui =
∑
n,i≥0

fn,iz
nui

f0(z) = 1 + zf1(z),

fi(z) = zfi−1(z) + zfi+1(z) (i ≥ 1)

F (z, u) = 1 + zuF (z, u) + z
F (z, u)− F (z,0)

u

u ... “catalytic variable”



One Functional Equation

Non-negative lattice paths

F (z,0) =
1−

√
1− 4z2

2z2
(squareroot singularity)

f2n,0 = [z2n]F (z,0) =
1

n

(2n
n

)
∼
√

8

π
n−3/22n



One Functional Equation

Planar Maps

Mn,k ... number of planar maps with n edges and outer face valency k

M(z, u) =
∑
n,k

Mn,kz
nuk



One Functional Equation

Planar Maps

M(z, u) = 1 + zu2M(z, u)2 + uz
uM(z, u)−M(z,1)

u− 1
.

u ... “catalytic variable”

M(z,1) = −
1

54z2

(
1− 18z − (1− 12z)3/2

)
(3/2-singularity)

Mn = [zn]M(z,1) =
2(2n)!

(n+ 2)!n!
3n ∼

2
√
π
· n−5/212n



One Functional Equation

One positive linear equation

Theorem 1. Polar singularity:

Q0(z), Q1(z) ... polynomials with non-negative coefficients.

B(z) = Q0(z) + zQ1(z)B(z)

=⇒ bn = [zn]B(z) ∼ cj · z−n0 , n ≡ j mod m

for j ∈ {0,1, . . . ,m− 1} and some m ≥ 1.

z0 > 0 is given by z0Q1(z0) = 1.

Remark. Proof is simple analysis of B(z) = Q0(z)/(1− zQ1(z)).



One Functional Equation

One positive non-linear equation

Theorem 2. [Bender, Canfield, Meir+Moon, ...] Squareroot sing.:

Q(z, y) ... polynomial with non-negative coefficients and Q(0,0) = 0

and Qyy 6= 0.

B(z) = Q(z,B(z))

=⇒ bn = [zn]B(z) ∼ c · n−3/2z−n0 . , n ≡ j0 mod m,

and bn = 0 for n 6≡ j0 mod m, where m ≥ 1.

z0 > 0 satisfies b0 = Q(z0, b0) and 1 = Qy(z0, b0) for some b0 > 0.

Remark. Proof is based on the analysis of the singular point (z0, b0)

of the curve b = Q(z, b) that leads to the squareroot singularty B(z) =

g(z)− h(z)
√

1− z/z0.



One Functional Equation

One positive linear catalytic equation

Theorem 3. [D.+Noy+Yu] Squareroot singularity:

Q0(z, u), Q1(z, u), Q2(z, u) ... polynomials with non-negative coeffi-

cients such that Q1,u 6= 0 and u6 |Q2.

M(z, u) = Q0(z, u) + zM(z, u)Q1(z, u) + z
M(z, u)−M(z,0)

u
Q2(z, u)

=⇒ Mn = [zn]M(z,0) ∼ c · n−3/2z−n0 , n ≡ j0 mod m,

(for some constants c, z0 > 0) and Mn = 0 for n 6≡ j0 mod m, where

m ≥ 1.



One Functional Equation

One positive non-linear catalytic equation

Theorem 4. [D.+Noy+Yu] 3/2-Singularity:

Q(y0, y1, z, u) ... polynomial with non-negative coefficients that is

non-linear in y0, y1 (and depends on y0, y1) and Q0(u) a non-negative

polynomial in u.

M(z, u) = Q0(u) + zQ

(
M(z, u),

M(z, u)−M(z,0)

u
, z, u

)

=⇒ Mn = [zn]M(z,0) ∼ c · n−5/2z−n0 . , n ≡ j0 mod m,

(for some constants c, z0 > 0) and Mn = 0 for n 6≡ j0 mod m, where

m ≥ 1.



System of Functional Equations

Q1, . . . Qd ... polynomials with non-negative coefficients.

y1 = y1(z), . . . , yd = yd(z) ... solution of the system:

y1 = Q1(z, y1, . . . , yd),
...

yd = Qd(z, y1, . . . , yd).

Recall that if d = 1 then the single equation y = Q(z, y) has either

a polar singularity (if it is linear) or a squareroot singularity (if it is

non-linear).

Question. What happends for d > 1 ??



Systems of functional equations

Strongly connected dependency graph

Theorem 5 [D., Lalley, Woods]

y = Q(z,y) ... non-negative (and well defined) polynomial system

of d ≥ 1 equations such that the dependency graph is strongly con-

nected.

Then the situation is the same as for a single equation.

It the system is linear then we have a common polar singularity and

[zn]y1(z) ∼ cj · z−n0 , n ≡ j mod m

whereas if it is non-linear then we have a squareroot singularity and

[zn]y1(z) ∼ c · n−3/2z−n0 . , n ≡ j0 mod m.



Systems of functional equations

General dependency graph

Theorem 6 [Banderier+D.]

y = Q(z,y) ... non-negative (and well defined) polynomial system

of equations.

=⇒ [zn] y1(z) ∼ cj nαj ρ−nj (n ≡ j mod m),

for j ∈ {0,1, . . . ,m− 1} for some m ≥ 1, where

αj ∈ {−2−k − 1 : k ≥ 1} ∪ {m2−k − 1 : m ≥ 1, k ≥ 0} .



Theorem 3: Kernel Method

M(z, u) = Q0(z, u) + zM(z, u)Q1(z, u) + z
M(z, u)−M(z,0)

u
Q2(z, u)

rewrites to

M(z, u)
(

1− zQ1(z, u)−
z

u
Q2(z, u)

)
= Q0(z, u)−

z

u
M(z,0)Q2(z, u).

If u = u(z) satisfies the kernel equation

1− zQ1(z, u(z))−
z

u(z)
Q2(z, u(z)) = 0

Then the right hand side is also zero and we obtain

M(z,0) =
Q0(z, u(z))

1− zQ1(z, u(z))



Theorem 3: Kernel Method

The kernel equation

1− zQ1(z, u(z))−
z

u(z)
Q2(z, u(z)) = 0

rewrites to

u(z) = zQ2(z, u(z)) + zu(z)Q1(z, u(z))

By Theorem 2 we, thus, obtain a squareroot singularity for u(z)

which implies a squareroot singularity for

M(z,0) =
Q0(z, u(z))

1− zQ1(z, u(z))
.



Theorem 4: Bousquet-Melou–Jehanne Method

Let P (x0, x1, z, u) be an analytic function such that (y(z) = M(z,0))

P (M(z, u), y(z), z, u) = 0.

By taking the derivative with respect to u we get

Px0(M(z, u), y(z), z, u) Mu(z, u) + Pu(M(z, u), y(z), z, u) = 0.

Key observation:

∃u(z) : Px0(M(z, u(z)), y(z), z, u(z)) = 0=⇒Pu(M(z, u(z)), y(z), z, u(z)) = 0

Thus, with f(z) = M(z, u(z)) we get the system for f(z), y(z), u(z)

P (f(z), y(z), z, u(z)) = 0

Px0(f(z), y(z), z, u(z)) = 0

Pu(f(z), y(z), z, u(z)) = 0.



Theorem 4: Bousquet-Melou–Jehanne Method

Set (as given in our case)

P (x0, x1, z, u) = Q0(u) + zQ(x0, (x0 − x1)/u, z, u)− x0.

Then the system P = 0, Px0 = 0, Pu = 0 rewrites to

f(z) = Q0(u(z)) + zQ(f(z), w(z), z, u(z)),

u(z) = zu(z)Qy0(f(z), w(z), z, u(z)) + zQy1(f(z), w(z), z, u(z)),

w(z) = Q0,u(u(z)) + zQv(f(z), w(z), z, u(z)) + zw(z)Qy0(f(z), w(z), z, u(z)),

where

w(z) =
f(z)− y(z)

u(z)
.

This is a positive strongly connected polynomial system.



Theorem 4: Bousquet-Melou–Jehanne Method

Thus, by Theorem 5 the solution functions f(z), u(z), w(z) have a

squareroot singularity at some common singularity z0:

f(z) = g1(z)− h1(z)

√
1−

z

z0
,

u(z) = g2(z)− h2(z)

√
1−

z

z0
,

w(z) = g3(z)− h3(z)

√
1−

z

z0
.

=⇒ y(z) = f(z)− u(z)w(z) has also a squareroot singularity at z0

y(z) = g4(z)−h4(z)

√
1−

z

z0
= a0+a1

√
1−

z

z0
+a2

(
1−

z

z0

)
+a3

(
1−

z

z0

)3/2

+· · ·

but maybe there are cancellations of coefficients aj (and actually

this happens!!!): we have a1 = 0 and a3 > 0 .



Bousquet-Melou–Jehanne Method – General
Case

1st difference

M(z, u) = Q0(u) + zQ

(
M(z, u),

M(z, u)−M(z,0)

u
, z, u

)

Higher differences

M(z, u) = Q0(u) + zQ
(
M(z, u),∆(1)(z, u), . . . ,∆(d)(z, u), z, u

)
where

∆(j)(z, u) =
M(z, u)−M(z,0)−Mu(z,0)u− · · · −Muj−1(z,0)uj−1

uj

Theorem (Bousquet-Melou–Jehanne). Such an equation has always

an algebraic solution.



Kernel Method for the Linear Case (d = 2)

M(z, u) = Q0(z, u) + zM(z, u)Q1(z, u) + z
M(z, u)−M(z,0)

u
Q2(z, u)

+ z
M(z, u)−M(z,0)−Mu(z,0)u

u2
Q3(z, u)

rewrites to

M(z, u)
(

1− zQ1(z, u)−
z

u
Q2(z, u)−

z

u2
Q3(z, u)

)
= Q0(z, u)−M(z,0)

(
z

u
Q2(z, u) +

z

u2
Q3(z, u)

)
−Mu(z,0)

z

u
Q3(z, u)

Here two functions u = u1(z) and u = u2(z) satisfy the kernel equa-

tion

1− zQ1(z, u(z))−
z

u(z)
Q2(z, u(z))−

z

u(z)2
Q3(z, u(z)) = 0

The right hand side is then zero for u = u1(z) and u = u2(z) which is

a linear system for M(z,0) and Mu(z,0)



Kernel Method for the Linear Case (d = 2)

The kernel equation for u = u1(z) and u = u2(z)

1− zQ1(z, u(z))−
z

u(z)
Q2(z, u1,2(z))−

z

u(z)2
Q3(z, u(z)) = 0

rewrites to

u(z)2 = u(z)2zQ1(z, u(z)) + zu(z)Q2(z, u1,2(z)) + zQ3(z, u(z))

or to

u1(z) =
√
zu1(z)2Q1(z, u1(z)) + zu1(z)Q2(z, u1(z)) +Q3(z, u1(z))

u2(z) = −
√
zu2(z)2Q1(z, u2(z)) + zu2(z)Q2(z, u2(z)) +Q3(z, u2(z))

We lose the property that u1(z) and u2(z) have just non-negative

coefficients and it is not clear that there is a squareroot singularity.



Bousquet-Melou–Jehanne Method for the Non-
linear Case

Let P (x0, x1, x2, z, u) be an analytic function such that

P (M(z, u), y0(z), y1(z), z, u) = 0.

By taking the derivative with respect to u we get

Px0(M(z, u), y0(z), y1(z), z, u) ·Mu(z, u)+Pu(M(z, u), y0(z), y1(z), z, u) = 0.

Key obervation:

Px0(M(z, u(z)), y0(z), y1(z), z, u(z)) = 0=⇒Pu(M(z, u(z)), y0(z), y1(z), z, u(z)) = 0

We need two functions u1(z) and u2(z). Setting fj(z) = M(z, uj(z))

we get the system for f1(z), f2(z), y0(z), y1(z), u1(z), u2(z)

P (f1(z), y0(z), y1(z), z, u1(z)) = 0, P (f2(z), y0(z), y1(z), z, u2(z)) = 0

Px0(f1(z), y0(z), y1(z), z, u1(z)) = 0, Px0(f2(z), y0(z), y1(z), z, u2(z)) = 0

Pu(f1(z), y0(z), y1(z), z, u1(z)) = 0, Pu(f2(z), y0(z), y1(z), z, u2(z)) = 0



Bousquet-Melou–Jehanne Method for the Non-
linear Case

Set (as given in our case)

P (x0, x1, x2, z, u) = Q0(u) + zQ(x0, (x0 − x1)/u, (x0 − x1 − ux2)/u2, z, u)− x0.

Then the above system rewrites to

f1,2(z) = Q0(u1,2(z))+

+zQ
(
f1,2(z),

f1,2(z)−M(z,0)

u1,2(z)
,
f1,2(z)−M(z,0)− u1,2(z)Mu(z,0)

u1,2(z)2
, z, u1,2(z)

)
,

u1,2(z)2 = zu1,2(z)2Qy0(· · · ) + zu1,2(z)Qy1(· · · ) + zQy2(· · · ),

Q0,u(u1,2(z)) =
f1,2(z)−M(z,0)

u1,2(z)

(
1− zQy0(· · · )

+ z
f1,2(z)−M(z,0)− u1,2(z)Mu(z,0)

u1,2(z)3
Qy2(· · · )

This cannot be rewritten into a positive strongly connected poly-

nomial system.



Second Differences: The Linear Case

Theorem 3’. [D.+Hainzl] Squareroot singularity:

Q0(z, u), Q1(z, u), Q2(z, u), Q3(z, u) ... polynomials with non-negative

coefficients (+ some technical conditions).

M(z, u) = Q0(z, u) + zM(z, u)Q1(z, u) + z
M(z, u)−M(z,0)

u
Q2(z, u)

+ z
M(z, u)−M(z,0)−Mu(z, u)u

u2
Q3(z, u)

=⇒ Mn = [zn]M(z,0) ∼ c · n−3/2z−n0 . , n ≡ j0 mod m,

(for some constants c, z0 > 0) and Mn = 0 for n 6≡ j0 mod m, where

m ≥ 1.



Second Differences: The Non-linear Case

Theorem 4’. [D.+Hainzl] 3/2-Singularity:

Q(y0, y1, y2, z, u) ... polynomial with non-negative coefficients that is

non-linear in y0, y1, y2 (+ some technical conditions).

M(z, u) = Q0(u)

+ zQ

(
M(z, u),

M(z, u)−M(z,0)

u
,
M(z, u)−M(z,0)−Mu(z,0)u

u2
, z, u

)

=⇒ Mn = [zn]M(z,0) ∼ c · n−5/2z−n0 . , n ≡ j0 mod m,

(for some constants c, z0 > 0) and Mn = 0 for n 6≡ j0 mod m, where

m ≥ 1.



Applications

One-dimensional non-negative lattice path with steps ±1 and ±2

E0(z) = 1 + z(E1(z) + E2(z)),

E1(z) = z(E0(z) + E1(z) + E2(z)),

Ek(z) = z(Ek−2(z) + Ek−1(z) + Ek+1(z) + Ek+2(z)) (k ≥ 2),

which gives for E(z, u) =
∑
k≥0Ek(z)uk

E(z, u) = 1 + z(u+ u2)E(z, u) + z
E(z, u)− E(z,0)

u

+ z
E(z, u)− E(z,0)− uEv(u,0)

u2
.



Applications

3-Constellations in Eulerian Maps

M(z, u) = 1 + zuM(z, u)3 + zu(2M(z, u) +M(z,1))
M(z, u)−M(z,1)

u− 1

+ zu
M(z, u)−M(z,1)−Mu(z,1)(u− 1)

(u− 1)2

Remark. There are many equations of this type in the context of map

enumeration (even more generally with higher differences)



Higher Differences

Conjecture

Consider a catalytic equation with higher differences:

M(z, u) = Q0(u) + zQ
(
M(z, u),∆(1)(z, u), . . . ,∆(d)(z, u), z, u

)
where Q0 and Q have non-negative coefficients (+ some technical

conditions)

• If Q is linear in y0, y1, . . . , yd then M(z,0) has a squareroot singu-

larity

• If Q is non-linear in y0, y1, . . . , yd then M(z,0) has a 3/2-singularity



Theorem 3’: Proof Ideas for the Linear Case

Set

R(z, u) = zu2Q1(z, u) + zuQ2(z, u) +Q3(z, u)

Then the kernel equation for u = u1,2(z) reads as

u2 = R(z, u)

Ansatz

u1(z) = g(z) +
√
h(z) u2(z) = g(z)−

√
h(z)



Proof Ideas for the Linear Case

u2 = (g ±
√
h)2 = g2 + h±

√
h2g

R(z, g ±
√
h) =

∑
k

Rk(z)(g ±
√
h)k

=
∑
k

Rk(z)
k∑

j=0

(k
j

)
gk−j(±1)jhj/2

=
∑
k,`

Rk(z)
( k
2`

)
gk−2`h` ±

√
h
∑
k,`

Rk(z)
( k

2`+ 1

)
gk−2`−1h`

= R+(z, g, h)±
√
h ·R−(z, g, h)

u2 = R(z, u) =⇒ g2 + h = R+(z, g, h), 2g = R−(z, g, h)



Proof Ideas for the Linear Case

The kernel equation

u2 = R(z, u)

rewrites to

g2 + h = R+(z, g, h), 2g = R−(z, g, h)

or to

h = R+(z, g, h)− g2, g =
1

2
R−(z, g, h)

This is not a positive system!



Proof Ideas for the Linear Case

Lemma

The functions g(z) , h(z) have the following properties:

• they have non-negative coefficients

• they have a common squareroot singularity z0

• the function u2(z) = g(z)−
√
h(z) is regular at z0

Corollary. The functions M(z,0) , Mu(z,0) have a squareroot sin-

gularity at z0, too.



Additional Parameters

Number of vertices in planar maps

M(z, x, u) ... generating function of rooted planar maps, where the

variable z corresponds to the number of edges, x to the number of

vertices and u to the root face valency.

M(z, x, v) = x+ zu2M(z, x, u)2 + zu
M(z, x,1)− uM(z, x, u)

1− u

Xn ... number of vertices in a random planar map with n edges

Central Limit Theorem

Xn satisfies a central limit theorem with E[Xn] = 1
2n + O(1) and

Var[Xn] = 5
32n+O(1).



Additional Parameters

Theorem 7

Suppose that M(z, x, u) and M1(z, x) are the solutions of the catalytic
equation

P (M(z, x, u),M1(z, x), z, x, u) = 0 ,

where the function P (x0, x1, z, x, u) is analytic and M1(z,1) has a sin-
gularity at z = z0 of the form

M1(z,1) = y0 + y2

(
1−

z

z0

)
+ y3

(
1−

z

z0

)3/2

+ · · · ,

with y3 6= 0 (+ some technical conditions)

Then M1(z, x) has a local singular representation of the form

M1(z, x) = a0(x) + a2(x)

(
1−

z

ρ(x)

)
+ a3(x)

(
1−

z

ρ(x)

)3/2

+ · · ·

Corollary. Hwang’s Quasi-Power-Theorem leads then to a Central
Limit Theorem



Additional Parameters

Vertices of degree k in planar maps

M(z, x, u) ... generating function for rooted planar maps, where z

corresponds to the number of edges, x to the number of non-root

faces of degree k, and u to the root-face degree

M(z, x, u)
(
1− z(x− 1)u−k+2

)
=1 + zu2M(z, x, u) + zu

uM(z, x, u)−M(z, x,1)

u− 1

− z(x− 1)u−k+2G(z, x,M(z, x,1), u),

where G(z, x, y, u) is a polynomial of degree k−2 in u with coefficients

that are analytic functions in (z, x, y) for |z| ≤ 1/10, |x−1| ≤ 21−k, and

|y| ≤ 2.



Additional Parameters

Pure k-gons in planar maps

We say that a face is a pure k-gon (k ≥ 2) if it is incident exactly to k

different edges and k different vertices.

P (z, x, u) ... generating function for rooted planar maps, where z cor-

responds to the number of edges, x to the number of non-root faces

that are pure k-gons, and u to the root-face degree.

P (z, x, u) =1 + zu2P (z, x, u) + zu
uP (z, x, u)− P (z, x,1)

u− 1

− z(x− 1)u−k+2G̃(z, x, P (z, x,1), u),

where G̃(z, x, y, u) is a polynomial of degree k−2 in u with coefficients

that are analytic functions in (z, x, y) for |z| ≤ 1/10, |x−1| ≤ 21−k, and

|y| ≤ 2.



Additional Parameters

Vertices of degree k in simple planar maps

S(z, x, u) ... generating function for simple rooted planar maps, where
z corresponds to the number of edges, x to the number of non-root
vertices of degree k, and u to the root-face degree.

S(z, x, u) =1 + zu2S(z, x, u) + zu
uS(z, x, u)− S(z, x,1)

u− 1
− zuS(z, x, u)S(z, x,1)− (S(z, x, u)− 1)(S(z, x,1)− 1)

+ (x− 1)

zu−k+2S(z, x, u)G1(z, x, S(z, x,1), u)

− zuS(z, x, u)G2(z, x, S(z, x,1))

− (S(z, x, u)− 1)G3(z, x, S(z, x,1))

,
where G1(z, x, y, u) is a polynomial of degree k−2 in u with coefficients
that are analytic functions in (z, x, y) for |z| ≤ 2/25, |x − 1| ≤ 2−k−5,
and |y−1| ≤ 2/5. Similarly properties hold for the functions G2(z, x, y)
and G3(z, x, y).



Thank You!


