DE LA RECHERCHE À L'INDUSTRIE

Fabrication additive d'alliages de cuivre pour des cavités radio-fréquences d'accélérateurs de particules

Q. Ponchon, F. Lomello, K.Danfakha, F. Eozenou, S. Jenzer, N. Delerue, T. Proslier.

06/2021 - 11/2021

INTRODUCTION

ACCÉLÉRATEURS DE PARTICULES

CAVITÉS RADIO-FRÉQUENCES

FABRICATION ADDITIVE

3 fonctions principales :

- Production de particules électriquement chargées
- Focalisation et Déviation du faisceau de particules
 - Accélération du faisceau de particules

Photographie Large Hadron Collider

Futurs défis dans la physique des hautes énergies

- ILC (International Linear Collider)
- FCC (Future Circular Collider)
- Augmentation des performances
- Réduction des coûts

DE LA RECHERCHE À L'INDUSTRI

Les Cavités Radio-fréquences Supraconductrices

Technologie actuellement utilisée :

- Matériau : Niobium (supraconducteur)
- Fabrication : Mécano-soudé
- Refroidissement : Bain d'hélium liquide

 $P = \frac{1}{2} \int r_s * H^2 \, ds$

Puissance héterogène

Réduction coût cryogénique Augmentation performances

Exemple avec cavités supraconductrices elliptiques mais transposable aux cavités "chaudes" et RFQ

Objectif du projet :

- Matériaux : Cuivre (substrat) + Revêtement supracondoncteur
- Fabrication : Fabrication additive
 + Déposition
- Refroidissement : Hélium liquide dans canaux internes de cavités / cryocoolers

P2IO - 26/11/2021

LA RECHERCHE A L'INDUSTRIE

Liberté de forme offerte par la fabrication additve

Schéma de principe du procédé FLLP

Propriètés du cuivre comparées à d'autres alliages

Powder	Laser Roller Fabricat powder 1 powder 1 Powder delivery piston	Fabrication	scanner system	Laser scanning direction Sintered powder particles (brown state) Laser beam Laser beam (green state) Laser sintering		Conductivité thermique à 293K (W/m/K)	Conductivité thermique à 4K (W/m/K)		
delivery system		powder bed Obje fab					Cuivre (RRR =30)	390	183
I							Niobium (RRR = 200)	50	20
I				Unsintered		material	Aluminium (RRR = 30)	130	114
					in previous layers		316L	12	<1
	5		ð.				TiAl6V	7	<1

Problèmes du cuivre en FLLP

- > Mauvaise absportion de l'énergie apportée par le laser ($\lambda = 1070$ nm)
- Haute conductivé thermique qui dissipe rapidement l'énergie

EXPERIMENTATIONS

FABRICATION ADDITIVE D'ALLIAGES DE CUIVRE

POST-TRAITEMENT DE SURFACE

TESTS UHV

Chimiquement proche du cuivre pur

Alliage à durcissement structural – Précipités de Cr et de Zr dans une matrice de Cu

	Cr	Zr	Fe	Si	Cu
Teneurs [m%]	0,5 – 1,2	0,03 - 0,3	0,008 maximum	0,1 maximum	Bal.

Composition chimique du CuCrZr

Échantillons CuCrZr obtenus en FLLP

≻ÉLEMENTS EN SOLUTION SOLIDE (MÉTALURGIE OBTENUE PAR FLLP) FAIT CHUTER ÉNORMEMENT LA CONDUCTIVITÉ THERMIQUE → PLUS FACILE À IMPRIMER QUE LE CUIVRE PUR

➢POST-TRAITEMENT THERMIQUE POUR AMÉLIORER LES PROPRIÈTÉS MÉCANIQUES ET THERMIQUES

> Intéréssant pour le procédé FLLP

Densification du cuivre dépend surtout de l'énergie absorbée → Limite machine 175W

P: Puissance Laser	v : Vitesse laser	t : Épaisseur de couche	h :Écart vecteur	E : Densité d'énergie	Densité pièces
(W)	(<i>mm</i> /s)	(µm)	(µm)	(J/mm^3)	%
175	700	30	60	139	~85%
175	250	30	70	333	~95%

Principaux paramètres :

$$E=\frac{P}{v\,t\,h}$$

Résultats :

- La densité maximale atteinte est d'environ 95%, la puissance laser est insuffissante pour obtenir des cordons de fusion stables
- L'augmentation de la densité d'énergie augmente la densité finale de la pièce

Méthode 1 : Mesure optique

9 positions différentes pour prises de mesures

Méthode 2 : Pésée hydrostatique (Archimède) : 95 %

➔ Les 2 méthodes correspondent

P 175 W – V 250 mm/s – T 30 μm – H 70 μm

IRFU/DACM

9

TEST UHV

Test UHV

Il y a une fuite !
→ Certainement due à la faible densité finale de la pièce
Densité : 95 % - Épaisseur de paroi: 2mm

Démontre la faisabilité technique d'obtenir une pièce avec une structure complexe (lattices internes)

Enceinte en CuCrZr

DE LA RECHERCHE À L'INDUSTR

POST-TRAITEMENT : PROCÉDÉ D'ÉLECTROPOLISSAGE

60.0 µm

50.0

40.0

^{30.0}10

20.0

10.0

Électropolissage

120.0

100.0

80.0

60.0

40.0

20.0

Après EP

Surfaces des côtés

 Surface rugueuse avec particules juste fritées sur la surface mais non fondues totalement

	Sa (µm)	Sz (µm)	Ssk
Avant EP	12,9	186	1,51
Après EP 95 % densité	3,9	62	0,14
Après EP 85% densité	16	163	/

L'augmentation de la densité finale des pièces permet d'améliorer l'état de surface après électropolissage

Post-fabrication – Avant EP

- Densification CuCrZr compliqué (95%) avec puissance laser limitée 175W (λ=1070nm) mais densité >99% avec CuSn12 (F.Lomello)
- Réalisations avec un laser vert (515nm) sur du cuivre pur en cours à l'UTBM (seul machine FLLP avec laser vert en France)
- → Essais sur alliages d'aluminium
- Essais UHV : Pas d'étanchéité obtenue avec du CuCrZr (densité 95% épaisseur 2mm)
- ➔ Tests sur CuSn12 et le Cuivre Pur avec des densités plus élevées seront réalisés
- Électropolissage sur CuCrZr (Ra=4 microns) (F.Eozenou)
- ➔ Tests sur CuSn12 et le Cuivre Pur avec des densités plus élevées seront réalisés
- → Simulations thermo-mécanique pour optimisation topologique (F.Nizery)
- → Mesures propriètes à température cryogéniques

Problème : accessibilité machine

Coordinateurs projet : Thomas Proslier (CEA) & Nicolas Delerue (IJCLab)

IRFU/DACM

Merci au LabEx P2IO et merci pour votre attention !

Commissariat à l'énergie atomique et aux énergies alternatives Centre de Saclay | 91191 Gif-sur-Yvette Cedex

Etablissement public à caractère industriel et commercial | R.C.S Paris B 775 685 019

Tel: +33 1 69 08 xx xx - Fax: +33 1 69 08 xx xx

Direction de la Recherche Fondamentale Institut de recherche sur les lois fondamentales de l'Univers Service