Overall status of the GBAR experiment

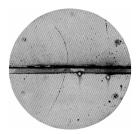
Samuel Niang

Paris-Saclay University / IJCLAB

Journe LabEx P2IO

Supervisor: David Lunney

November 26, 2021


Table of contents

- 1 Introduction
 - What is antimatter?
 - The GBAR experiment

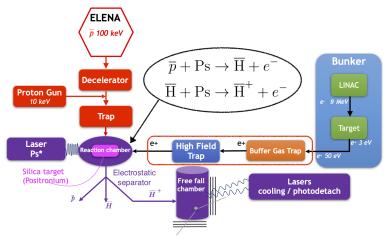
└What is antimatter?

What is antimatter?

Dirac (1928), Quantum physics + Spin + Special relativity $(i\hbar\gamma^{\mu}\partial_{\mu}-mc)\psi=0$

Experimental evidence of e^+ (1933, Anderson)

- Antimatter has been studied in many ways
- lacktriangle Gravity has not been unified with quantum physics and antimatter is absolutely quantum ightarrow GBAR experiment

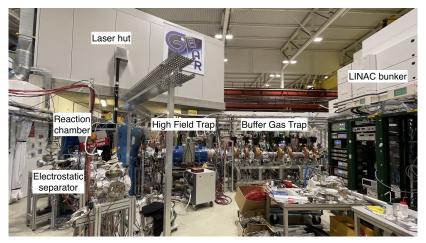


"Antimatter Factory", where GBAR, PUMA, ASACUSA, BASE, AEGIS and ALPHA are located.

Context of the GBAR experiment \rightarrow Antigravity

- Analogy EM and gravitation $\nabla \cdot E = \rho/\epsilon_0 \leftrightarrow \nabla \cdot g = -4\pi G \rho$
- lacksquare 2 opposite charges are attracted \leftrightarrow 2 positive masses
- Gravity: $m_I a = m_G g$ and $m_I = m_G$, CPT: $m_I = \bar{m}_I$ but $\bar{m}_I = \bar{m}_G$?
- \blacksquare Morrison's argument: Antigravity \leftrightarrow no energy conservation.
- \blacksquare A γ falls in a gravity field, but $\bar{\gamma}=\gamma.$
- lacksquare Just a variation of $\left|rac{ar{m}_I-ar{m}_g}{m_I}
 ight|\sim 1\%$ is already important.

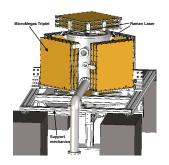
General overview



Overall scheme of the GBAR experiment.

L_Introduction

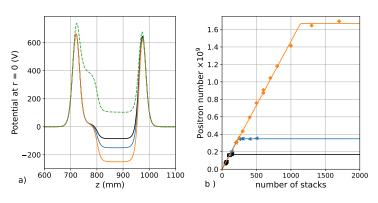
The GBAR experiment


General overview

Picture of the GBAR experiment at CERN.

Almost in the final settings

- lacktriangle \overline{p} trap capable of trapping e^-
- End of 2021 run: \overline{p} trap at the end of the line
- \overline{p} trap need to be placed between the drift tube and the reaction chamber
- The free fall chamber still need to be built

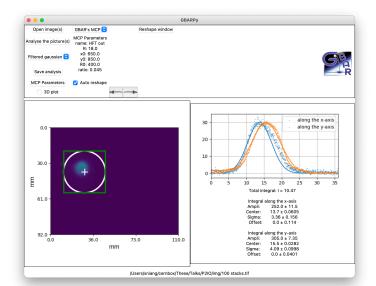

Table of contents

- 2 Status of the positron line
 - Maximum amount of positrons trapped
 - During the last ELENA run
 - Ways of improvements

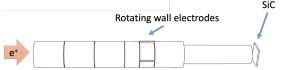
Overall status of the GBAR experiment

- Status of the positron line
 - Maximum amount of positrons trapped

$1.7 \times 10^9 e^+$ trapped in 1100 seconds



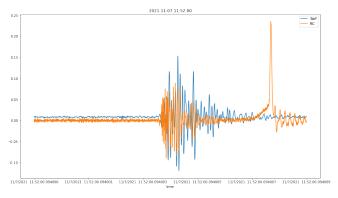
a) Potential profiles used for the stacking (solid lines) and the ejection (broken line) procedure. b) Positron number as a function of the number of stack for the successive potential wells. **A world wide record**. unive


Overall status of the GBAR experiment

- Status of the positron line
 - └─ During the last ELENA run

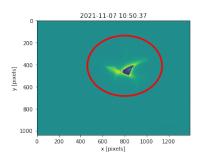
$10^8 e^+$ accumulated between 2 ELENA bunches (115 s)

■ trapping rate too slow: SiC re-moderator inserted in the BGT. It lead \rightarrow 40% efficiency instead of 10%. Not fully implemented yet because of mechanical issues

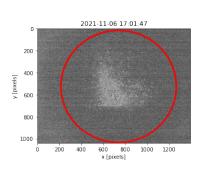

- LINAC at 200 Hz needs to go to 300 Hz. Another technical challenge: cooling of the target.
- \blacksquare The final bunch is too large \to still looking for solutions

Status of the antiproton line

Table of contents

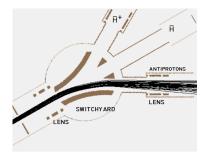

3 Status of the antiproton line

Antiprotons can reach their target after the final deceleration (10-20 keV)

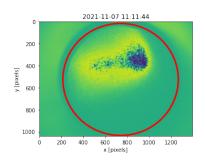


Signal of the antiprotons in the reaction chamber after a pulse of a drift tube. $\frac{\text{unive}}{\text{PARIS-1}}$

Antiprotons can reach their target after the final deceleration (10-20 keV)

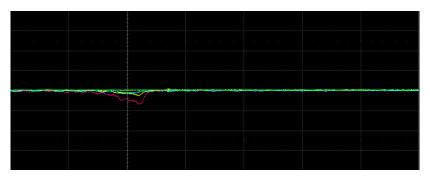


MCP picture of the \overline{p} bunch in the Reaction Chamber.

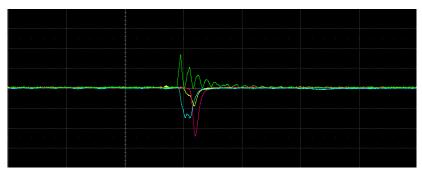


 \overline{p} after the switchyard when they went through the cavity.

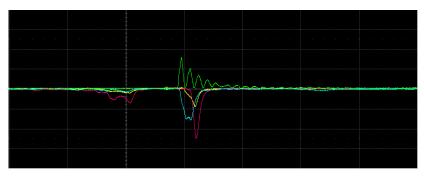
Antiprotons can reach their target after the final deceleration (10-20 keV)



Scheme of the switchyard. In the end the \overline{p} will be "recycled".


MCP picture of the \overline{p} bunch after the switchyard.

Synchronisation between e^+ and \overline{p}


 \overline{p} only in the reaction chamber cavity.

Synchronisation between e^+ and \overline{p}

 $e^+(\mathrm{Ps})$ annihilation only in the reaction chamber cavity.

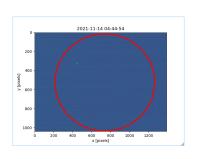
Synchronisation between e^+ and \overline{p}

 \overline{p} and Ps in the reaction chamber cavity. It is then possible to mix them!

Conclusion of the 2021 run and outcomes

Table of contents

4 Conclusion of the 2021 run and outcomes


Conclusion of the 2021 run and outcomes

What have done:

- antiprotons slowed with the pulsed drift tube
- antiprotons lead to the reaction chamber and the switchyard
- first calibrations of the detectors with \overline{p}
- background measurement \overline{p} , e^+ , AD.
- $Ps \overline{p}$ mixing. \overline{H} ?

For the next run:

- $\blacksquare \overline{p}$ accumulation
- \blacksquare \overline{H} production
 - H⁺?

