Journée du LabEx P2IO
26 November 2021

Shape evolution in neutron-rich nuclei around mass $\mathrm{A}=100$

Giorgia Pasqualato

G. Pasqualato ${ }^{1}$, A. Görgen ${ }^{2}$, J.S. Heines ${ }^{2}$, J. Ljungvall ${ }^{1}$, V. Modamio ${ }^{2}$, L.G.. Pedersen ${ }^{2}$, and W. Korten ${ }^{3}$
${ }^{1}$ IJCLab, IN2P3/CNRS, Université Paris-Saclay, Orsay, France.
2 Department of Physics, University of Oslo, Norway.
${ }^{3}$ CEA Paris-Saclay, DRF/IRFU/DPhN, Gif-sur-Yvette, France.

The nuclear landscape

- many nuclear properties are experimentally accessible: binding energy, decay type, spin and energy of excited states
- test theoretical models for the description of nuclear structure and nuclear phenomena with experiments
- e.g. : Magic numbers: $2,8,20,28,50,82,126, \ldots$

The nuclear landscape

- many nuclear properties are experimentally accessible: binding energy, decay type, spin and energy of excited states, ...
- test theoretical models for the description of nuclear structure and nuclear phenomena with experiments
- e.g. : Magic numbers: $2,8,20,28,50,82,126, \ldots$

Shape evolution in nuclei

[^0]

Nuclei with a number of nucleons in between magic configurations are characterized by deformation.

Shape evolution in nuclei

Deformed nuclei can manifest different shape.

Shape evolution in nuclei

The systematic study of deformation and shape coexistence along the nuclear chart is a powerful way to test nuclear models !

- Shape coexistence

Shape evolution in nuclei around $A=100$

Rapid onset of deformation observed in the region around mass $A=100$.

Shape evolution in nuclei around $A=100$

Drastic change in nuclear properties as a function of $N($ and $Z)$!

- Energies of the first $\mathbf{2 1}_{1}{ }^{+}$

- Decay probability $\mathbf{B}\left(\mathbf{E} \mathbf{2} ; \mathbf{2}_{\mathbf{1}}{ }^{\boldsymbol{+}} \boldsymbol{\rightarrow} \mathbf{0 1}^{\mathbf{+}}\right.$)

Rapid onset of deformation observed in the region around mass $A=100$.

[^1]
Shape-phase transition in Zr isotopes

For the Zr chain, the onset of deformation at $\mathrm{N}=60$ has been studied by many theoretical approaches.

```
generator coordinate method (GCM):
J. Skalski, P.-H. Heenen, and P. Bonche, Nucl. Phys. A 559, }221\mathrm{ (1993).
J.-P. Delaroche et al., Phys. Rev. C 81, }014303\mathrm{ (2010).
macroscopic-microscopic method:
J. Skalski, S. Mizutory, and W. Nazarewicz, Nucl. Phys. A 617, }282\mathrm{ (1997).
shell model:
P. G. Reinhard, et al., Phys. Rev. C 60, 014316 (1999).
A. Holt, T. Engeland, M. Hjorth-Jensen, and E. Osnes, Phys. Rev. C 61, 064318 (2000).
K. Sieja, F. Nowacki, K. Langanke, and G. Martínez-Pinedo, Phys. Rev. C 79, 064310 (2009).
Y.-X. Liu et al., Nucl. Phys. A 858, }11\mathrm{ (2011).
Shell Model Monte Carlo
C. Özen and D. J. Dean, Phys. Rev. C 73, O14302 (2006).
Monte Carlo Shell Model:
T. Togashi, Y. Tsunoda, T. Otsuka and N. Shimizu, Phys. Rev. Lett. 117, 172502 ( 2016).
interacting boson model (IBM) approximation:
J. E. García-Ramos et al., Eur. Phys. J. A 26, }221\mathrm{ (2005).
M. Böyükata, P. Van Isacker and I.. Uluer, J. Phys. G: Nucl. Part. Phys. 37, 105102 (2010)
K. Nomura, R. Rodríguez-Guzmán, and L. M. Robledo, Phys. Rev. C 94, 044314 (2016).
Hartree-Fock (HF) and Hartree-Fock-Bogoliubov (HFB) models:
R. Rodríguez-Guzmán et al., Phys. Lett. B 691, }202\mathrm{ (2010)
VAMPIR model:
A. Petrovici,Phys. Rev. C 85, 034337 (2012).
```


Shape-phase transition in Zr isotopes

For the Zr chain, the onset of deformation at $\mathrm{N}=60$ has been studied by many theoretical approaches.
generator coordinate method (GCM):
J. Skalski, P.-H. Heenen, and P. Bonche, Nucl. Phys. A 559, 221 (1993).
J.-P. Delaroche et al., Phys. Rev. C 81, 014303 (2010).
macroscopic-microscopic method:
J. Skalski, S. Mizutory, and W. Nazarewicz, Nucl. Phys. A 617, 282 (1997).
shell model:
P. G. Reinhard, et al., Phys. Rev. C 60, 014316 (1999).
A. Holt, T. Engeland, M. Hjorth-Jensen, and E. Osnes, Phys. Rev. C 61, 064318 (2000).
K. Sieja, F. Nowacki, K. Langanke, and G. Martínez-Pinedo, Phys. Rev. C 79, 064310 (2009).
Y.-X. Liu et al., Nucl. Phys. A 858, 11 (2011).

Shell Model Monte Carlo
C. Özen and D. J. Dean, Phys. Rev. C 73, 014302 (2006).

Monte Carlo Shell Model:
T. Togashi, Y. Tsunoda, T. Otsuka and N. Shimizu, Phys. Rev. Lett. 117, 172502 (2016).
interacting boson model (IBM) approximation:
J. E. García-Ramos et al., Eur. Phys. J. A 26, 221 (2005).
M. Böyükata, P. Van Isacker and İ. Uluer, J. Phys. G: Nucl. Part. Phys. 37, 105102 (2010).
K. Nomura, R. Rodríguez-Guzmán, and L. M. Robledo, Phys. Rev. C 94, 044314 (2016).

Hartree-Fock (HF) and Hartree-Fock-Bogoliubov (HFB) models:
R. Rodríguez-Guzmán et al., Phys. Lett. B 691, 202 (2010).

VAMPIR model:
A. Petrovici,Phys. Rev. C 85, 034337 (2012).

- Description of the rapid shape chance + shape coexistence
\rightarrow further experimental investigation in this region are needed!

Study nuclear shape through electromagnetic transition strengths

\rightarrow GOAL : obtain precise experimental information on nuclear deformation with electromagnetic transition strengths T through the measurement of the lifetime τ of nuclear excited states.

$\tau=\mathbf{T}^{-1} \rightarrow B\left(\Omega L ; J_{i} \longrightarrow J_{f}\right)=\frac{1}{2 J_{i}+1}\left|\left\langle J_{f}\|M(\Omega L)\| J_{i}\right\rangle\right|^{2}$
EXPERIMENT: lifetimes
$\rightarrow \rightarrow$
THEORY: matrix elements

LIFETIME MEASUREMENTS

The lifetime of a nuclear state can range from 10^{-20} seconds to billions of years
different techniques have been implemented

RDDS : Recoil Distance Doppler Shift technique for the ps range

Production and identification of fission fragments

Production and identification of fission fragments

fusion-fission reaction

VAMOS large acceptance magnetic spectrometer
fragment identification based on atomic number Z, mass M and charge Q

Production and identification of fission fragments

VAMOS large acceptance magnetic spectrometer
fragment identification based on atomic number Z, mass M and charge Q

Detection of γ rays with AGATA

Recoil Distance Doppler Shift technique

Recoil Distance Doppler Shift technique

Status of the analysis

- Many lifetimes extracted for many even-even isotopes: Ru
\rightarrow New values for ${ }^{104} \mathrm{Zr},{ }^{108} \mathrm{Mo},{ }^{106,108,110,112} \mathrm{Ru}$
- Goals of the present analysis:
\rightarrow Refine the analysis procedure
\rightarrow Error determination
\rightarrow Go further : odd systems, low-statistics cases.

Mo

Zr
G. Pasqualato ${ }^{1}$, A. Görgen ${ }^{2}$, J.S. Heines ${ }^{2}$, J. Ljungvall ${ }^{1}$, V. Modamio ${ }^{2}$, L.G.. Pedersen ${ }^{2}$, and W. Korten ${ }^{3}$
${ }^{1}$ IJCLab, IN2P3/CNRS, Université Paris-Saclay, Orsay, France.
2 Department of Physics, University of Oslo, Norway.
${ }^{3}$ CEA Paris-Saclay, DRF/IRFU/DPhN, Gif-sur-Yvette, France.

Preliminary results for ${ }^{100} \mathrm{Zr}$ in single γ and coincidence $\gamma \gamma$

- Lifetime measurements in gamma single and gamma-gamma coincidence.
- Comparison with previous results for the levels $4^{+}, 6^{+}, 8^{+}, 10^{+}$of the yrast band :
\rightarrow The adopted value for the 4^{+}may be overestimated.
\rightarrow The 6^{+}and 8^{+}adopted lifetimes also result larger.
unseen feeding?
\rightarrow Measurements in yy gives shorter lifetimes (4+ and 6^{+}) as expected.
\rightarrow The lifetime of the 8^{+}is accurate in single y due to the short-living feeding.

$\mathrm{J} \pi$	Energy [keV]	$\tau[\mathrm{ps}]$ adopted	$\tau[\mathrm{ps}]$ single y	$\tau[\mathrm{ps}]$ coincid yy
$\mathbf{4 +}$	352.0	$53.4(6)$	$36.9(6)$	$30(2)$ *
$6+$	497.4	$7.5(1.6)$	$5.7(3)$	$5.0(6)$
$8+$	625.6	$2.5(2)$	$1.0(1)$	$1.7(4)$
$10+$	739.0	$0.53(6)$	$0.6(2)$	1

[^2]

Preliminary results for ${ }^{104} \mathrm{Zr}$ in single γ

$\mathrm{J} \pi$	Energy [keV]	τ [ps] single y
$\mathbf{4 +}$	312.3	$62(5)$
$6+$	473.7	$4(2)$

Conclusions

- The value of the lifetimes obtained for ${ }^{100} \mathrm{Zr}$ confirm the strong deformed character of this system, as predicted from different nuclear models and experimentally investigated.
- The high efficiency of AGATA and the resolution of the VAMOS identification
allow us to measure the lifetime of exotic systems like ${ }^{104} \mathrm{Zr}$
\rightarrow investigation of the trend and the limits of deformation in the A~100 region.

- Many lifetimes have been already extracted for even-even isotopes in Zr , Mo and Ru , among which new values for ${ }^{104} \mathrm{Zr},{ }^{108} \mathrm{Mo}$, ${ }^{106,108,110,112} \mathrm{Ru}$.
- Precise values of lifetimes and errors estimation in progress \rightarrow many new results in this region.

Thanks for listening

G. Pasqualato ${ }^{1}$, A. Görgen ${ }^{2}$, J.S. Heines ${ }^{2}$, J. Ljungvall ${ }^{1}$, V. Modamio ${ }^{2}$, L.G.. Pedersen ${ }^{2}$, and W. Korten ${ }^{3}$

1 IJCLab, IN2P3/CNRS, Université Paris-Saclay, Orsay, France.
${ }^{2}$ Department of Physics, University of Oslo, Norway. and
${ }^{3}$ CEA Paris-Saclay, DRF/IRFU/DPhN, Gif-sur-Yvette, France.

Shape-phase transition in Zr isotopes

Results from recent MCSM calculations:
T. Togashi, Y. Tsunoda, T. Otsuka and N.

Shimizu, Phys. Rev. Lett. 117, 172502 (2016).

The rapid shape change at $\mathrm{N}=60$ appears as a results of shell evolution associated with proton excitation in the $g_{9 / 2}$.

The increasing number of neutrons increases the split of the spin-orbit partner $g_{7 / 2}-g_{9 / 2}$ thus reducing the gap at $N=40$. Proton particle-hole excitations in the unique-parity orbital $g_{9 / 2}$ lower the ESPEs of neutron $g_{7 / 2}$ and $h_{11 / 2}$ orbitals, favoring quadrupole interactions and the coherent contribution of different configurations.

The ESPEs form $s_{1 / 2}$ to $g_{7 / 2}$ shrink abruptly starting from the second O^{+}in ${ }^{98} \mathrm{Zr}$.

Both protons and neutron act coherently to induce the deformation.

Shape-phase transition in Zr isotopes

Results from recent MCSM calculations:
T. Togashi, Y. Tsunoda, T. Otsuka and N.

Shimizu, Phys. Rev. Lett. 117, 172502 (2016).

The crossing of two distinct configurations at $\mathrm{N}=60$ appears in the abrupt change in the ground state structure and is interpreted as a Quantum Phase Transition (QPT) at N=58-60 from "spherical phase" to "deformed phase".

The lowering of the intruder $\mathrm{O}_{2}{ }^{+}$state from ${ }^{98} \mathrm{Zr}$ to ${ }^{98} \mathrm{Zr}$ continues in ${ }^{100} \mathrm{Zr}$ where it becomes the ground state.

T-plots for $\mathrm{O}_{1,2}{ }^{+}$states of $98,100,110 \mathrm{Zr}$ isotopes to analyze the intrinsic shape of SM eigenstates:

Shape coexistence have been established for ${ }^{96,98} \mathrm{Sr},{ }^{94,96} \mathrm{Zr}$ and ${ }^{98} \mathrm{Zr}$, key nucleus for the understanding of QPT.
E. Clément et al., Phys. Rev. Lett. 116, 022701 (2016).
E. Clément et al.,Phys. Rev. C 94, 054326 (2016).
A. Chakraborty, E. E. Peters, B. P. Crider et al., Phys. Rev. Lett. 110, 022504 (2013).
C. Kremer et al., Phys. Rev. Lett. 117, 172503 (2016).).

Shell model orbitals

Lifetime measurements with the DDCM

Lifetime in single y measurements are analyzed with the DDCM by using the following experimental information:

$$
\tau\left(x_{p}\right)=\frac{-A^{U}\left(x_{p}\right)+\sum_{j} b_{j} \alpha_{j} B_{j}^{U}\left(x_{p}\right)}{v_{i n} \frac{d A^{U}\left(x_{p}\right)}{d x}}
$$

$$
\alpha_{j}\left(x_{p}\right)=\frac{B_{j}^{U}\left(x_{p}\right)+B_{j}^{S}\left(x_{p}\right)}{A^{U}\left(x_{p}\right)+A^{S}\left(x_{p}\right)} \cdot \frac{\epsilon_{A}}{\epsilon_{B}}
$$

- Lifetime in coincidence yy are analyzed with the DDCM by gating in the shifted component of a direct feeding transition B of the state of interest. No other information about the feeding are needed

$$
\tau\left(x_{p}\right)=\frac{\left\{A_{S}, B_{U}\right\}\left(x_{p}\right)}{\frac{d}{d x}\left\{A_{S}, B_{S}\right\}\left(x_{p}\right)} \cdot \frac{x_{p}}{\beta c}
$$

Decay curves for ${ }^{100} \mathrm{Zr}$ in single γ

Feeding for the 4^{+}state in ${ }^{100} \mathrm{Zr}$

Background around 550 keV and 650 keV state in ${ }^{100} \mathrm{Zr}$

Preliminary results for ${ }^{100} \mathrm{Zr}$ in coincidence $\gamma \gamma$ - gate and BG subtraction

The analysis in $\gamma \gamma$ revealed problems in its applicability in this case.
\rightarrow The small energy difference between shifted and "stopped" peak of the feeding transition makes the set of the gate not easy:

Different gates in the shifted feeding events (one left to avoid "stopped" contaminants, and one centered) lead to different results.
\rightarrow The subtraction of the BG also results in a different final value of tau.

When subtracting the BG and/or when using a left gate on the feeder, the resulting lifetime is short:

GATE [keV]	τ [ps] no BG sub	τ [ps] with BG sub
482.5, 490.5	$32.8(12)$	$30.0(23)$
$486.5,494.5$	$38.4(25)$	$37.2(38)$

\rightarrow the left gate and the BG subtraction seems the best option for $\gamma \gamma$ analysis

Example of an odd-even system: ${ }^{101} \mathrm{Nb}$ in single γ

[^0]: P. Möller, A.J. Sierk, T. Ichikawa, H. Sagawa,

 Nuclear ground-state masses and deformations: FRDM(2012),
 Atomic Data and Nuclear Data Tables, 109-110, (2016),

[^1]: E. Cheifetz, R.C. Jared, S.G. Thompson and J.B. Wilhelmy, 1970, Phys. Rev. Lett. 25, 38
 P. Federman and S. Pittel, 1977, Phys. Lett. B 69, 385.
 P. Federman and S. Pittel, 1979, Phys. Rev. C 20, 820.
 L. Bettermann et al., Phys. Rev. C 82 (4) 044310 (2010).
 A.G. Smith et al., Physics Letters B 591 1-2, 55-60 (2004)
 K. Heyde and J.L. Wood, Rev. Mod. Phys. 83, 1467 (2011).

[^2]: *The feeding transition at 840.2 keV is not considered : difficult to resolve its shifted component from the $841.7 \mathrm{keV} 12^{+} \rightarrow 10^{+}$

