Improved near detectors and nuclear models for present and future neutrino oscillation experiments

Jaafar Chakrani, for the BSM-Nu group Laboratoire Leprince-Ringuet (LLR) <iaafar.chakrani@polytechnique.edu>

Journée du LabEx P2IO Laboratoire de Physique des Solides, Orsay November 26th, 2021

- Introduction:
 - BSM-Nu project
 - Neutrino oscillations and long-baseline experiments
- T2K Near Detector Upgrade
- Improved nuclear models
- Summary and prospects

The BSM-Nu project

BSM-Nu: federation of all the actors of neutrino physics inside the P2IO perimeter. Very new kind of group in the field: neutrino+nuclear physicist + theoreticians + engineers from different neutrino experiments working together and sharing expertise towards the precision era in nu physics.

Goal: Neutrino nature (Majorana?) and neutrino mixing (MH? δ_{CP} ?) as a way to access BSM physics

- Neutrino flavor states: $\nu_e, \nu_\mu, \nu_\tau \rightarrow$ production and detection
- Neutrino mass states: $u_1, \nu_2, \nu_3 \rightarrow$ propagation

- Neutrino flavor states: $\nu_e, \nu_\mu, \nu_\tau \rightarrow {\sf production}$ and detection
- Neutrino mass states: $\nu_1, \nu_2, \nu_3 \rightarrow$ propagation

- Neutrino flavor states: $\nu_e, \nu_\mu, \nu_\tau \rightarrow$ production and detection
- Neutrino mass states: $\nu_1, \nu_2, \nu_3 \rightarrow$ propagation

- Neutrino flavor states: $\nu_e, \nu_\mu, \nu_\tau \rightarrow$ production and detection
- Neutrino mass states: $\nu_1, \nu_2, \nu_3 \rightarrow$ propagation

flavor oscillations

- Neutrino flavor states: $\nu_e, \nu_\mu, \nu_\tau \rightarrow$ production and detection
- Neutrino mass states: $\nu_1, \nu_2, \nu_3 \rightarrow$ propagation

flavor oscillations

What do Long-Baseline Experiments measure?

• Mass and flavor states mixing: $|
u_i
angle = \sum_{lpha=e,\mu, au} U_{lpha i} \, |
u_lpha
angle$

$$U = egin{pmatrix} 1 & 0 & 0 \ 0 & c_{23} & s_{23} \ 0 & -s_{23} & c_{23} \end{pmatrix} egin{pmatrix} c_{13} & 0 & s_{13}e^{-i\delta_{CP}} \ 0 & 1 & 0 \ -s_{13}e^{i\delta_{CP}} & 0 & c_{13} \end{pmatrix} egin{pmatrix} c_{12} & s_{12} & 0 \ -s_{12} & c_{12} & 0 \ 0 & 0 & 1 \end{pmatrix} egin{pmatrix} c_{ij} = \cos(heta_{ij}) \ s_{ij} = \sin(heta_{ij}) \ \end{array}$$

- Long-baseline experiments are sensitive to:
 - \circ Atmospheric parameters $(\theta_{23}, \Delta m_{32}^2)$ through $\nu_{\mu}/\bar{\nu}_{\mu}$ disappearance

$$P(\overrightarrow{\nu}_{\mu} \to \overrightarrow{\nu}_{\mu}) \approx 1 - \sin^2 2\theta_{23} \sin^2 \left(\frac{\Delta m_{32}^2 L}{4E}\right)$$

 \circ $(\delta_{CP}, \theta_{23})$ through $\nu_e/\bar{\nu}_e$ appearance

$$P(\overleftarrow{\nu}_{\mu} \rightarrow \overleftarrow{\nu}_{e}) \approx \sin^{2} 2\theta_{13} \sin^{2} \theta_{23} \sin^{2} \left(\frac{\Delta m_{32}^{2} L}{4E}\right) (\mp) O(\delta_{CP})$$

Mass and flavor states mixing: $|
u_i
angle = \sum_{lpha=e,\mu, au} U_{lpha i} \, |
u_lpha
angle$

$$U = egin{pmatrix} 1 & 0 & 0 \ 0 & c_{23} & s_{23} \ 0 & -s_{23} & c_{23} \end{pmatrix} egin{pmatrix} c_{13} & 0 & s_{13}e^{-i\delta_{GP}} \ 0 & 1 & 0 \ -s_{13}e^{i\delta_{CP}} & 0 & c_{13} \end{pmatrix} egin{pmatrix} c_{12} & s_{12} & 0 \ -s_{12} & 0 \ 0 & s_{ij} = \sin(heta_{ij}) \ 0 & \text{then matter and anti-matter} \end{pmatrix}$$

- Long-baseline experiments are sensitive to:
 - Atmospheric parameters $(\theta_{23}, \Delta m_{32}^2)$ through $\nu_{\mu}/\bar{\nu}_{\mu}$ disappearance

$$P(\overleftarrow{
u}_{\mu}
ightarrow \overleftarrow{
u}_{\mu}) pprox 1 - \sin^2 2 heta_{23} \sin^2 \left(rac{\Delta m_{32}^2 L}{4E}
ight)$$
 the matter/anti-matter

 $(\delta_{CP}, \theta_{23})$ through $\nu_e/\bar{\nu}_e$ appearance

$$P(\overleftarrow{\nu}_{\mu} \rightarrow \overleftarrow{\nu}_{e}) \approx \sin^{2} 2\theta_{13} \sin^{2} \theta_{23} \sin^{2} \left(\frac{\Delta m_{32}^{2} L}{4E}\right) (\mp O(\delta_{CP}))$$

could behave differently in the lepton sector → CP violation!

This could shed light on asymmetry in the Universe

- Proton beam on graphite target
- Produced hadrons decay into muon (anti-)neutrinos

Currently:

~300 km

Japan

Tokyo 東京

Next generation:

 To measure the oscillation parameters, the neutrino energy needs to be determined precisely

$$P(\vec{\nu}_{\mu} \to \vec{\nu}_{e}) \approx \sin^{2} 2\theta_{13} \sin^{2} \theta_{23} \sin^{2} \left(\frac{\Delta m_{32}^{2} L}{4E}\right) (\mp) O(\delta_{CP})$$

 An accurate reconstruction of the neutrino energy from the outgoing particles requires a precise neutrino-nucleus interaction model

 To measure the oscillation parameters, the neutrino energy needs to be determined precisely

$$P(\overrightarrow{\nu}_{\mu} \to \overrightarrow{\nu}_{e}) \approx \sin^{2} 2\theta_{13} \sin^{2} \theta_{23} \sin^{2} \left(\frac{\Delta m_{32}^{2} L}{E}\right) (\mp) O(\delta_{CP})$$

 An accurate reconstruction of the neutrino energy from the outgoing particles requires a precise neutrino-nucleus interaction model

Two ways to improve the neutrino energy reconstruction:

- Improve the detectors
- Improve the nuclear model

→ Focus of BSM-Nu WP2

Fine Grained Detectors (FGDs):

- Plastic scintillator tracker
- Target for neutrinos

FGD2 has water target layers

Time Projection Chambers (TPCs)

- Tracking detectors
- Charged particle momentum
- Particle ID

- Non-isotropic efficiency (unlike Super-Kamiokande)
- High momentum proton threshold (~450 MeV/c)
- For the oscillation analysis, neutrino interactions are characterized in muon kinematics only

- New high-angle TPCs
- New Time Of Flight detector
- Super-FGD: 2.10⁶ 1 cm³ scintillator cubes

The goal is to reduce the ND systematics with:

- Fully active target
- 4π acceptance for charged particles
- Lower proton momentum threshold (~300 MeV/c)
- Neutron detection

- Improved reconstruction at high and backward angles → better constraints on the neutrino interaction model
- Increased target mass (x2 current ND280) → more statistics
- Better reconstruction of outgoing nucleons → access to new observables
- Neutrino interaction measurements beyond p_{μ} , $\cos\theta_{\mu}$ (exclusive and multidimensional analyses)

 The neutrino energy can be estimated using the lepton kinematics only under the assumption of a quasi-elastic interaction on a static initial state nucleon

$$E_{
u}^{QE} = rac{m_p^2 - (m_n - E_b)^2 - m_{\mu}^2 + 2(m_n - E_b)E_{\mu}}{2ig(m_n - E_b - E_{\mu} + p_{\mu}\cos heta_{\mu}ig)}$$

• When reconstructing the proton as well, the *visible energy* can be a better estimation of the neutrino energy $E_{\rm vis}=E_{\mu}+T_{p}$

p.d.f.

arXiv:2108.11779

Using proton & lepton information

$$E_{
m vis} = E_{\mu} + T_p$$

Using lepton information only

$$E_{
u}^{QE} = rac{m_p^2 - (m_n - E_b)^2 - m_\mu^2 + 2(m_n - E_b)E_\mu}{2(m_n - E_b - E_\mu + p_\mu \cos heta_\mu)}$$

$$E_{
u}^{QE}=rac{m_{p}^{2}-\left(m_{n}-E_{b}
ight)^{2}-m_{\mu}^{2}+2\left(m_{n}-E_{b}
ight)E_{\mu}}{2\left(m_{n}-E_{b}-E_{\mu}+p_{\mu}\cos heta_{\mu}
ight)}$$

is an accurate estimation of the neutrino energy using muon kinematics only

Nucleons are bound within nuclei (Carbon & Oxygen in T2K).

Need to account for:

- Removal energy
- Fermi motion

T2K now uses the sophisticated **Spectral Function model**

BSM solar streets accelerator atmospheric coherent scattering

 Development of systematic uncertainties in this new framework for the oscillation analysis

- The outgoing hadrons from a neutrino-nucleon interaction can re-interact with the remaining nucleus
- Ongoing work to improve the nuclear model for FSI of nucleons in neutrino simulations using INCL, one of the most predictive existing intranuclear-cascade models
 - → crucial for T2K Near Detector Upgrade & next generation experiments

36

Sensitivity with the Upgraded T2K Near Detector

arXiv:2108.11779

Sensitivity to syst. uncertainties

- Using the outgoing proton information (eg. visible energy & transverse momentum imbalance) allows a better reconstruction of the neutrino energy and constraint on systematic uncertainties
- The dominant systematic uncertainties can be constrained down to the few-% level as required by future oscillation analyses of T2K-II and next generation experiments

- BSM-Nu project regroups several neutrino experiments around a common goal:
 access BSM physics through the characterisation of neutrino nature and mixing
- Long-baseline experiments aim at measuring neutrino oscillation parameters
- To probe CP violation, we need to improve the current detector technologies as well as the modeling of neutrino-nucleus interactions
- Contributions of BSM-Nu WP2:
 - Detectors: T2K Near Detector upgrade → High-Angle TPCs
 - Neutrino-nucleus interaction model: improvement of the initial state nuclear model (Spectral Function model) and ongoing work to improve the modeling of final state interactions

- Prospects of BSM-Nu WP2:
 - Preparation of a new fitting framework for oscillation analyses with new samples and observables in the era of T2K-II and beyond
 - o Installation and commissioning of T2K Near Detector Upgrade at the end of 2022

- Neutrino flavor states: $\nu_e, \nu_\mu, \nu_\tau \rightarrow$ production and detection
- Neutrino mass states: $\nu_1, \nu_2, \nu_3 \rightarrow$ propagation

Off-axis detector (2.5 degrees, 0.6 GeV flux peak)

- Fine Grained Detectors (FGDs)
 - Plastic scintillator tracker
 - FGD1 & 2 carbon target (CH)
 - FGD2 has water target layers
- Time Projection Chambers (TPCs)
 - Tracking detectors
 - Charged particle momentum
 - Particle ID
- Very good measurements of muon kinematics

- Neutrons can be detected via their re-interaction within the detector
- If the path is long enough, neutron energy can be measured using time of flight
- Resolution: ~15-30%

Phys. Rev. D 101, 092003