Dark matter direct searches with DarkSide and MadMax

Fabrice Hubaut On behalf of the CPPM dark matter team

CPPM – Aix-Marseille Université, CNRS/IN2P3

IPhU Dark Matter day, 26 Nov 2021

Direct DM searches at CPPM

Participation to one WIMP and one axion search world-leading experiment

- Strong motivations from particle physics for WIMPs and axions
- WIMP → DarkSide: proven technology with innovative design → DS-20k (2025-)
- > 2nd generation experiment, high discovery potential GeV-TeV: structuring physics project
- Axion \rightarrow MadMax: innovative concept \rightarrow prototyping phase for validation (2021-25)
- 1st generation experiment with unique potential: challenging cutting-edge R&D

□ New team created at CPPM in 2020: direct dark matter searches

→ Team members: 7.1 FTE [3.2 DR/PR, 2.9 IT, 1 PhD]

Chercheurs et enseignant-chercheurs

- José Busto (DarkSide)
- Fabrice Hubaut (Responsable d'équipe, DarkSide, responsable scientifique MadMax)
- Pascal Pralavorio (Responsable scientifique DarkSide, MadMax)
- Isabelle Wingerter-Seez (DarkSide)

Doctorants et post-doctorants

Marie Van Uffelen (DarkSide) [IPHU grant]

Ingénieurs et techniciens

- Pierre Barrillon service instrumentation (responsable technique DarkSide)
- Stéphan Beurthey service mécanique (MadMax)
- Fabrice Gallo service mécanique (MadMax)
- Pierre Karst service mécanique (responsable technique MadMax)
- Daniel Labat service mécanique (MadMax)
- Emmanuel Le Guirriec service informatique (DarkSide)
- Jérome Royon service électronique (DarkSide)
- Synergies with existing activities at CPPM and other French/Marseille labs

Direct DM searches at CPPM

Participation to one WIMP and one axion search world-leading experiment

- Strong motivations from particle physics for WIMPs and axions
- WIMP \rightarrow DarkSide: proven technology with innovative design \rightarrow DS-20k (2025-)
- > 2nd generation experiment, high discovery potential GeV-TeV: structuring physics project
- Axion \rightarrow MadMax: innovative concept \rightarrow prototyping phase for validation (2021-25)
- 1st generation experiment with unique potential: challenging cutting-edge R&D

□ New team created at CPPM in 2020: direct dark matter searches

→ Team members: 7.1 FTE [3.2 DR/PR, 2.9 IT, 1 PhD]

Synergies with existing activities at CPPM and other French/Marseille labs

DarkSide sensitivity (WIMPs)

□ Situation and prospects for dark matter WIMP direct searches

→ TPC with noble liquid (Xe, Ar): best limits 1 GeV - 100 TeV
→ Next decade decisive to probe WIMPs down to neutrino floor

APPEC 2017 recommendation : "strategy aimed at realising worldwide at least one ultimate Dark Matter detector based on xenon (~ 50 tons) and one based on argon (~ 300 tons), as advocated by DARWIN and Argo."

DarkSide at CPPM in a nutshell

IPhU-18 project (2021-2024)

With this project, we propose to prepare at best the direct searches for WIMPs that will be performed in the near future, through synergetic experimental and theoretical contributions.

Experiment (DarkSide): Calibration Optimal separation between signal and background (using AI) → Reduce experimental uncertainties Improve predictions for WIMP – nucleus cross sections (lattice QCD) → Reduce theoretical uncertainties

F. Hubaut	Optimal algorithms for signal/background separation (axis 1, see section 5)	E. Nezri	Improved modelling of the galactic halo (axis 2, see section 5)
P. Pralavorio	Optimal algorithms for signal/background separation (axis 1, see section 5)	L. Lellouch	Fully-controlled QCD uncertainties on WIMP-nucleus cross-sections (axis 2, see section 5)
I. Wingerter-Seez	Calibration of DarkSide-20k (axis 1, see section 5)	J. Lavalle	Improved modelling of the galactic halo (axis 2, see section 5)

Goal: be ready for 2025 (start of DarkSide-20k data taking) to have top contributions to first analyses

→ Ongoing project: collaboration CPPM-LAM-CPT-LUPM, 1 PhD (2021-2024)

MadMax sensitivity (axions)

□ Situation and prospects for dark matter axion direct searches

- Only 1 experiment (ADMX) currently probes a (very small) part of the favored phase space
- Vast R&D program to improve signal sensitivity and expand range of axion mass search
 - → Next decade will be decisive, probing axion DM most favorable region
- MADMAX targets "high mass" DM axions → exploit unique new experimental approach

Unique sensitivity of MADMAX in range m_a~40-400 μev

MadMax at CPPM in a nutshell

F. Hubaut

WIMP DM search: how?

Principles of noble liquid/gas TPC experiments

- Cryostat hosting a Time Projection Chamber (TPC) equipped with photo-multipliers
- Dual phase TPC \rightarrow scintillation signal (S1,~40 γ /keV*) followed by ionization one (S2,~50 e⁻/keV*)

DarkSide

□ LAr technology starts to be mature ...

- High removal of Electron Recoils → Background free at high WIMP mass
 - ✓ S1 pulse shape discrimination : additional rejection depending on nuclear properties

- > In Xenon, slow scintillation is actually quite fast (27 ns instead of 6 ns for fast scint.)
- In Argon, large difference between slow (1000 ns) and fast (6 ns) scintillations
- \rightarrow Discrimination with rejection >10⁸ (~none with LXe) thanks to intrinsic properties of Argon
- ✓ TPC filled with Underground Argon (less 39 Ar) + Further purification (39 Ar, 85 Kr, O, H₂O)
- Merging of all world-wide LAr experiments in 2017 (DEAP3600, DarkSide-50, miniCLEAN, ArDM → DarkSide-20k) : most advanced technology from each experiments

Axion DM search: how?

- Convert axions into photons [E field of $O(10^{-12}, \frac{B}{10T})$ V/m] \rightarrow high magnetic field >> 1T
- Boost photon field [up to P~10⁻²² W] → resonant cavities or emission at dielectric interfaces
- Scan over range of axion mass → need tunable set-up

New ideas of last decade coming to maturity to scan preferred mass range

MadMax concept

□ Dielectric haloscope → MadMax experiment

- New experimental concept to alleviate cavity limitation at high m_a (V~1/m_a³)
- Stack of dielectric disks with mirror on one side, inside B field → wave emission at interfaces
- Adjustable distance between disks → constructive interferences → tune to scan over m_a [spacing 20 mm for 40 μeV and 2 mm for 400 μeV]

 \rightarrow MadMax only capable to explore $m_a = 40-400 \ \mu eV$ (favored by post-inflation theory)