Low surface brightness galaxies as probe of DM haloes

Samuel Boissier, Jin Koda, \& Collaborators
(including Junais, Philippe Amram, Benoit Epinat at LAM)

DM properties impact low surface brightness structures
 - Imprints of DM often found in low surface brightness structures/galaxies

Less Massive DM Halo

Massive DM Halo

Ultra-Diffuse galaxies (UDGs)

- As large as MW in size, but only $\sim 1 / 100$ to $1 / 1,000$ of stellar mass
- Fragile against tidal disruption unless massive DM halos protect them

Schoening/Harvey/van Dokkum/NASA/ESA Hubble Space Telescope

Connections to DM

- Very abundant and centrally-concentrated in galaxy clusters (strong tidal field) \rightarrow DM statistics ok?
- DM halo masses from GC counts \rightarrow Massive DM?

Koda et al. 2015; Bautista et al. in
prep.

Probing the history of UDG

Junais et al. 2021 ; Junais et al., in preparation

130 "ultra-diffuse galaxies" in the Virgo-Cluster with multi-wavelength observations

Models including Ram-Pressure Stripping (dynamical pressure from the Inter-Cluster Medium on the gas galaxy due to its orbit within the cluster)
\rightarrow galaxy DM halo depth and survival (harder to strip the gas from a dense halo)
\rightarrow cluster DM halo
(density of the ICM, orbit within the cluster)

Rotation Curves of Giant LSB

Pickering et al. 1997
Lelli et al. 2010 (HI rotation curve)

Junais et al. 2020
(ionised gas emission line)

MUSE data (PI G. Galaz).
Preliminary analysis by B. Epinat. NOT YET PUBLIC!

1997

Pickering et al. : the slowly rising rotation curve in giant LSBs may tell us about the inner DM halo

2010

Lelli et al. : the rotation curve is rather flat (at the HI gas resolution)

2020

Junais et al. : in fact, there is a very steep rise (!) with extremely high velocity values. A massive DM halo is still needed.

2021

Very complex RC, confirming Junais et al. results, but also indicating a lot of structure in the DM dominated region.

