Pierre Fest, LAPTH, 25-26 November 2021 Total derivative in a Lagrangian versus improvement of a conserved Noether current F. Gieres (IP2I, Université de Lyon 1)

Subject (concerns classical relativistic field theory in *n*-dimensional Minkowski space-time $M = \mathbb{R}^n$) : Total derivative in a Lagrangian : $\mathcal{L}_1(\varphi, \partial_\mu \varphi) = \partial_\mu \Lambda^\mu(\varphi)$ (Locally) conserved Noether current (j^μ) : $\partial_\mu j^\mu \approx 0$ (Notation \approx for an on-shell equality) I. Reminder on conserved current densities (j^{μ}) :

- Equivalence relation :

$$j^{\mu} \sim j^{\mu} + \underbrace{\partial_{\rho} B^{\rho\mu}}_{\text{superpot. term}} + \underbrace{t^{\mu}}_{\approx 0}$$
,

where
$$B^{\rho\mu} = -B^{\mu\rho}$$

- Note :

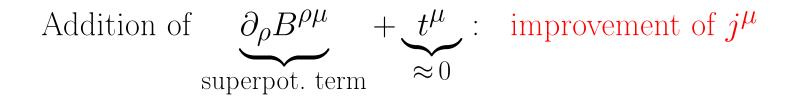
 $\partial_{\mu}(\partial_{\rho}B^{\rho\mu}) = 0$ (identically conserved)

- Thus :

For two equivalent currents $(j_1^{\mu}), (j_2^{\mu}) : \quad \partial_{\mu} j_1^{\mu} \approx \partial_{\mu} j_2^{\mu}$

- Hence :

 (j_1^{μ}) is on-shell conserved $\iff (j_2^{\mu})$ is on-shell conserved



Illustr. 1 : EMT of free electromagnetic field (n = 4)

Lagrangian :
$$\mathcal{L} = -\frac{1}{4} F^{\mu\nu} F_{\mu\nu}$$
, with $F_{\mu\nu} = \partial_{\mu} A_{\nu} - \partial_{\nu} A_{\mu}$

Canonical EMT :
$$T_{can}^{\mu\nu} = -F^{\mu\rho}\partial^{\nu}A_{\rho} + \frac{1}{4}\eta^{\mu\nu}F^{\rho\sigma}F_{\rho\sigma}$$

- Rewrite the first term :

$$-F^{\mu\rho} \underbrace{\partial^{\nu} A_{\rho}}_{=F^{\nu}\rho + \partial_{\rho}A^{\nu}} = F^{\mu\rho}F^{\nu}_{\rho} - F^{\mu\rho}\partial_{\rho}A^{\nu}$$

- Rewrite the last term by using the Leibniz rule :

$$-F^{\mu\rho}\partial_{\rho}A^{\nu} = \underbrace{\partial_{\rho}(-F^{\mu\rho}A^{\nu})}_{\text{superpot. term}} + \underbrace{(\partial_{\rho}F^{\mu\rho})}_{\approx 0}A^{\nu}$$

Thus :

 $T_{\rm can}^{\mu\nu} \sim F^{\mu\rho} F_{\rho}^{\ \nu} + \frac{1}{4} \eta^{\mu\nu} F^{\rho\sigma} F_{\rho\sigma}$

[Minkowski 1908]

Improved EMT : gauge invariant, symmetric, traceless

Illustration 2 : Scale invariance for a free massless real scalar field in n dimensions

Action :
$$S[\phi] \equiv \int_{M} d^{n} x \mathcal{L} \equiv \frac{1}{2} \int_{M} d^{n} x (\partial^{\mu} \phi) (\partial_{\mu} \phi)$$

Translation invariance \rightsquigarrow $T_{can}^{\mu\nu} = \partial^{\mu}\phi \,\partial^{\nu}\phi - \eta^{\mu\nu}\mathcal{L}$

Invariance of action under scale transformations $(\rho \in \mathbb{R})$ $x' = e^{\rho}x, \quad \phi'(x') = e^{-\rho d}\phi(x), \quad \text{with} \quad d \equiv \frac{n-2}{2}$

 \rightsquigarrow canonical dilatation current : $j_{can}^{\mu} = x_{\nu} T_{can}^{\mu\nu} + d \phi \partial_{\mu} \phi$

Trace of canonical EMT :

$$T^{\mu}_{\mathrm{can}\mu} = \frac{2-n}{2} \left(\partial^{\mu}\phi\right) \left(\partial_{\mu}\phi\right) \not\approx 0 \qquad \text{unless} \quad n=2$$

Improved dilatation current j_{conf}^{μ} Improved EMT $T_{\text{conf}}^{\mu\nu}$ (= traceless on-shell) :

$$j_{\rm conf}^{\mu} = x_{\nu} T_{\rm conf}^{\mu\nu}$$
 hence $0 \approx \partial_{\mu} j_{\rm conf}^{\mu} = T_{\rm conf\,\mu}^{\mu}$

C. Callan, S. Coleman, R. Jackiw [1970] : With $\xi_n \equiv \frac{1}{4} \frac{n-2}{n-1}$

$$j_{\rm conf}^{\mu} \equiv j_{\rm can}^{\mu} + \xi_n \,\partial_\rho \left[(x^{\mu} \partial^{\rho} - x^{\rho} \partial^{\mu}) \phi^2 \right]$$

$$T_{\rm conf}^{\mu\nu} \equiv T_{\rm can}^{\mu\nu} - \xi_n \left(\partial^{\mu}\partial^{\nu} - \eta^{\mu\nu}\Box\right)\phi^2$$

II. Adding a total derivative to the Lagrangian :

Integration by parts :

$$\frac{1}{2} \int_{M} d^{n}x \, (\partial_{\mu}\phi)(\partial^{\mu}\phi) = -\frac{1}{2} \int_{M} d^{n}x \, \phi \, \Box \phi + \frac{1}{2} \int_{M} d^{n}x \, \partial_{\mu} \underbrace{(\phi \, \partial^{\mu}\phi)}_{\propto \, \partial^{\mu}\phi^{2}}$$

 \rightsquigarrow Consider :

$$\mathcal{L}_1 \equiv \partial_\mu k^\mu$$
, with $k^\mu \equiv -\xi \,\partial^\mu \phi^2$ $(\xi \in \mathbb{R})$

Associated dilatation current :

$$j_1^{\mu} = \partial_{\rho} B^{\rho\mu}$$
 with $B^{\rho\mu} \equiv x^{\rho} k^{\mu} - x^{\mu} k^{\rho}$

Associated EMT :

 $T_1^{\mu\nu} = -\partial_\rho \chi^{\rho\mu\nu}$

with
$$\chi^{\rho\mu\nu} \equiv k^{\rho}\eta^{\mu\nu} - k^{\mu}\eta^{\rho\nu}$$

One recovers the expressions of CCJ from $\mathcal{L} + \mathcal{L}_1$ with the choice

$$\xi = \xi_n \equiv \frac{1}{4} \frac{n-2}{n-1}$$

III. Another example : [F. Delduc]

For certain (deformed) two-dimensional sigma models the addition of a certain total derivative to the Lagrangian allows us to have an improved current which satisfies the zero curvature condition (and thereby allows to establish the integrability of the models).

IV. General relation between a total derivative in the Lagrangian and improvements of conserved currents

V. Other examples???