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〈V (Φ)〉 =

〈

Φ̇2

2

〉

. (14)

The effective density may now induce a gravitational attraction insofar as

ρeff = 2 〈V 〉 > 0 . (15)

Allowing the field Φ to vibrate quickly has led to an overall change of sign with respect to the case considered in [10].
Notice furthermore that the associated pressure vanishes as a result of (3) and (14) so that the scalar fluid behaves
just like non–relativistic matter. Such coherent oscillations have already been considered in the literature, in the case
of the axion in particular – see also the interesting discussion of a quintessence field with a late oscillatory stage in
[14].

Another illustration of a fast evolving field is to make it rotate in some internal space. We may look for configurations
where the dark energy itself – and not its time–average – is rigorously static. A complex field with a uniformly rotating
phase features the simplest realization of that idea

Φ =
σ(r)√

2
e−iωt . (16)

If the field is non–interacting but has a mass m, the associated effective density obtains from

ρeff
2

= S00 = 2 Φ̇†Φ̇ − U (Φ) , (17)

where the potential U = m2 Φ†Φ. The pressure of the scalar fluid may be approximated by

P % Φ̇†Φ̇ − U (Φ) , (18)

when the space–derivatives of the field are negligible. This amounts to assume once again that the typical length
R of the system way exceeds 1/ω. Whenever the condition m % ω holds, the pressure is vanishingly small and the
scalar fluid behaves as a non–relativistic component. The associated effective density becomes ρeff = ω2σ2(r) with
no explicit dependence on the time. The complete model will be discussed in the next section where we will consider
the possibility of a boson–star like system extending over a whole galaxy and playing the role of a dark halo.

We conclude this section by pointing out the difficulty to have a common explanation for both the local dark
matter and the cosmological quintessence in terms of a scalar field. An excess of gravitational binding on galactic
scales requires the condition

Φ̇2 ≥ V (Φ) (19)

to be fulfilled. Conversely, should the overall pressure P be negative to account for a cosmological constant, the
potential would have to satisfy the inequality

Φ̇2

2
≤ V (Φ) . (20)

We conclude that the pressure–to–density ratio w must exceed the value of −1/3 in order for both conditions to be
simultaneously met. Such a range seems to be already excluded by the measurements of supernovae SNeIa [2].

III. THE SELF–GRAVITATING COMPLEX AND MASSIVE SCALAR FIELD.

Boson stars have been extensively studied in the past – see for instance [15–18]. For clarity, we will briefly summarize
the main features of self–gravitating bosons, following closely the presentation of [16]. We are interested in the stable
and bounded configurations of a complex scalar field obeying the action

S =

∫ √
−g d4x L{Φ, ∂µΦ} =

∫ √
−g d4x

{

gµν ∂µΦ
† ∂νΦ − U (Φ)

}

, (21)

where the potential U is invariant under the global symmetry
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Inserting the Schwarzschild asymptotic solution (28), one can check that the total mass is the same as the total energy
so that M = EM + EG. Following (28), the mass is also the limit of a slighlty different expression

M = −G−1 lim
r→∞

{

r2v′ev/2
}

(32)

By rewriting this limit as an integral over r, and by using the Einstein equation (25), one is able to express the mass
or total energy in terms of the field energy density

EM + EG =

∫ ∞

0

4π r2dr e5v/2 {W + V + U} . (33)

Notice that the gravitational contribution is then contained in the factor exp (5v/2). For bounded objects, the sum
W +V +U should therefore go to zero faster than r−3. Another important quantity is the conserved charge associated
to the U(1) global symmetry, i.e., the number of particles minus antiparticles N

N ≡
∫ ∞

0

4π r2dr
√
−g g0µ

{

i
(

Φ† ∂µΦ − ∂µΦ
† Φ

)}

=
2

ω

∫ ∞

0

4π r2dr eu+ 3v W . (34)

The simplest realization of this system occurs with a quadratic potential U = m2 Φ†Φ. By inspecting the Klein–
Gordon equation at large radii, one finds that finite energy solutions may exist only if m > ω1. Moreover, as soon as
u and v – respectively u′ and v′ – are small with respect to unity – respectively 1/r – the field asymptotically behaves
as

σ ∝ r−1 exp
{

−
(

m2 − ω2
)1/2

r
}

. (35)

Dimensionless equations are obtained by rescaling the field by the Planck mass and the radial coordinate by m−1 –
which is essentially the Compton wavelength of Φ

σ̄ =
√
2πG σ , r̄ = r m . (36)

Because of the symmetries of the action, the particle mass m, the rotation velocity ω and the lapse function eu appear
in the dimensionless equations only through the particular combination (ω/m)2e−2u. It is then convenient to define
the rescaled lapse function

e−2ū =
ω2

m2
e−2u . (37)

Asymptotic flatness imposes a relation between (ω/m) and the value of ū at infinity

ω

m
= e−ū(∞) . (38)

The solutions can be calculated by integrating a simple system of three variables – σ̄, ū and v – from zero to infinity.
For a given σ̄(0), with the assumption that v(0) = 0 and all first derivatives vanish at the origin, there is only one free
boundary condition left, namely the value of ū(0). Using an overshooting method, one finds a discrete set of values
ū(0)n – with n = 0, ...,∞ – such that ū converges at infinity with σ̄ and v smoothly decreasing towards zero. The
resulting configurations are the energy eigenstates of the system. The state with minimal energy is characterized by
the absence of nodes – of spheres where σ(r) = 0 – while each n–excited state has got n nodes.

Since we will assume that bosons play the role of galactic dark matter, we only need to study the Newtonian regime
in which |u| and |v| & 1. In this limit, the system has got additional symmetries which facilitate the description and
classification of the exact numerical solutions. The global order of magnitude of u and v depends on the parameter
ξ defined by ξ2 = 1 − ω2/m2, with ξ & 1 corresponding to the Newtonian limit. Indeed, one can show [16] that

1In the opposite case m < ω, the field oscillates at large distance like r−1 sin((ω2 − m2)1/2r). It fills the Universe with an
infinite amount of energy, unless some truncation mechanism is put by hand. This problem arises in particular when m = 0
[11], but not for the solutions considered here.
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FIG. 1. Rotation curves inside a galactic halo that consists of a pure self–gravitating scalar field. The corresponding boson
is massive but has no interactions. The fundamental and n = 2, 4, 6 states are featured together with an extremely excited
field configuration for which n → ∞. Conventional CDM haloes are also presented for comparison with mass density given by
relations (49) – isothermal distribution – and (50) – cuspy profile. Each curve has an arbitrary core radius and normalization.
We choose to normalize the five scalar field solutions to a common amplitude at the first maximum. These solutions possess
n + 1 maxima, followed by a decay in r−1/2 – as for any bounded object. The amplitudes of the first inner maxima are
approximately the same, while the outer ones are bigger. For n → ∞, the last maximum and the r−1/2 behavior are rejected
far outside the figure, at infinity: we only see a quasi-flat region with small oscillations.

make a strong statement, we will restrict our analysis to the simplest case of spiral galaxies and on distances smaller
than the optical radius ropt defined as the radius of the sphere encompassing 83% of the luminous matter. Indeed,
for spiral galaxies and on such distances, the only significant contributions to the total density arise from a stellar
disk with exponential density profile, plus the unknown dark halo contribution: one can avoid introducing a plethora
of free parameters describing the other components. On the basis of such considerations, Persic, Salucci and Stel [13]
– hereafter denoted PSS – performed a detailed statistical study over about 1100 optical and radio rotation curves.
They rescaled each rotation curve to the same size and amplitude by expressing the radius as r/ropt and the speed
as V(r)/V(ropt). The rescaled curves were found to depend only on a single parameter, the luminosity MI . Galaxies
were divided in eleven classes depending on their brightness MI and the authors provided for each group of spirals
the average rotation curve in the range r < 1.1 ropt. They showed that for non–luminous galaxies, rotation curves are
increasing near the optical radius while for brighter objects, they tend to become flat or they even slightly decrease.
This result is remarkable insofar as the dynamical contribution of the luminous disk – known up to a constant bias
factor β – is slightly decreasing at ropt. The immediate conclusion is that faint galaxies are always dominated by their
halo whereas bright spirals only need a very small contribution from non–luminous matter. This amazing one-to-one
correspondance between the disk and halo core density, depending only on one parameter (the magnitude), is generally
called the disk-halo conspiracy.

The purpose of this article is to investigate whether or not a non–interacting massive scalar field halo may account
for the universal rotation curves of PSS. To achieve this goal, we must solve once again the Einstein and Klein–Gordon
equations, adding to the former the contribution from the luminous disk. In order to keep a sherically symmetric
metric, we will describe the gravitational impact of the disk as if it was spherical. This approximation is reasonable
provided that the corresponding contribution to the mass budget of the system remains small – which is the case for
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L =
1

2
g µν ∂µϕ∂νϕ − V (ϕ) . (1)

Should the field be homogeneous, its cosmological energy density would be expressed as

ρϕ ≡ T 0
0 =

ϕ̇2

2
+ V (ϕ) , (2)

whereas the pressure would obtain from Tij ≡ −g ij P so that

Pϕ =
ϕ̇2

2
− V (ϕ) . (3)

If the kinetic term ϕ̇2/2 is small with respect to the contribution from the potential V (ϕ), the equation of state can
match the condition for driving accelerated expansion in the Universe, ωQ ≡ Pϕ/ρϕ < −1/3. Instead, in order to
behave as dark matter today, the field should be pressureless: |Pϕ| # ρϕ. So, the kinetic and potential energies should
cancel out in Eq. (3), a condition automatically fulfilled by a quickly oscillating scalar field averaged over one period
of oscillation. This well–known setup is that of the cosmological axion. It requires a quadratic scalar potential, so
that the kinetic and potential energies both redshift as ϕ2 ∝ a−3 with the Universe expansion and cancel out at any
time during the field dominated stage, which is then equivalent to the usual matter dominated one.

Axions – or more generally, bosonic dark matter – were revived recently due to the undergoing CDM crisis. For
instance, it was noticed in [12] that stucture formation on small scales can be forbidden by quantum mechanics, for
wavelengths smaller than the Compton wavelength – i.e., the minimal spreading of an individual boson wave function.
The latter matches the scale of galactic substructures for an ultra–light mass of order m ∼ 10−22 eV. Alternatively,
one may introduce a self–coupling term [13,14]. As we have seen, the existence of a matter–like dominated stage
requires that the contribution of non–quadratic terms to the potential energy remains subdominant. Nevertheless,
a self–coupling would modify the field behavior in the early Universe, as well as its clustering properties today in
regions where the field is overdense – exactly like for boson stars, which are crucially affected by the presence of a
self–coupling [15]. The self–coupling is also relevant for the issue of field clumps stability, and can explain why dwarf
and low–surface–brightness galaxies have cores with finite density [16].

A remarkable feature with bosonic dark matter is the possibility to form Bose condensates, i.e., large domains
where the field is coherent in phase and is in equilibrium inside its own gravitational potential – like boson stars –
or in that of an external baryonic matter distribution. This opens the possibility to have a very simple and elegant
model for galactic halos, in which rotation curves would follow from simple equations – essentially the Klein–Gordon
wave equation, which governs classical scalar fields as well as Bose condensates. This situation strongly differs from
the more conventional picture of a gas of individual particles – fermions or heavy bosons – for which gravitational
clustering does not lead to universal density profiles and where the shape of galactic halos can only be studied through
technically difficult N–body simulations.

The formation and stability of such condensates is a complicated issue – see e.g. [19–21] – even when the field is
complex and has a global charge – not to be understood as an electric charge, but as a conserved number of quanta
like the baryon or lepton number. For instance, a large condensate can be unstable under fragmentation into smaller
clumps. For a real scalar field with no conserved charge, the issue of stability is even more subtle since the field can
self–annihilate, especially when the condensate core density exceeds a critical value [19]. This property can improve
the agreement with observations [16], since the coupling constant will tune the upper limit on the density of dark
matter cusps at the center of galaxies. However, such a positive feature is far from excluding models with a conserved
charge. In fact, the issue of Bose condensation on galactic scales – in an expanding Universe – has never been studied
in details. The result would depend very much on the scalar potential, and it is difficult to guess what would be the
maximal core density today.

In this work, we will focus on the scenario with a conserved charge, and assume that dark matter consists in a
complex scalar field with a quasi–homogeneous density in the early Universe, producing later galactic halos through
Bose–condensation. The Lagrangian density reads

L = gµν ∂µφ
† ∂νφ − V (φ) . (4)

Throughout this analysis, we will focus on the potential

V = m2φ†φ + λ
{

φ†φ
}2

. (5)

As a prologue to the study of density perturbations, we will follow the evolution of the homogeneous cosmological
background of this field, taking into account the constraints on the scalar potential coming from galactic halos. In a
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FIG. 1. Evolution of the field and matter densities, in the scenario with λ = 0 and m ∼ 10−23 eV. The evolution starts at a
redshift z = 1010 – but we could have equally well started earlier. The initial value of the field density can be chosen arbitrarily,
below or above that of radiation density. After decaying as a−6, the field density reaches a plateau which amplitude has been
fixed according to Eq. (53). This condition ensures a correct value of the density today: ρφ = Ω cdmρ0c . At z = 6.3× 105, when
H = m, the density starts to decrease as a−3, like for presureless matter, and takes over radiation at z # 3× 103.
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FIG. 2. Two possible evolutions of the field real and imaginary parts, in the scenario with λ = 0 and m ∼ 10−23 eV. On
the left panel, the initial field modulus has been chosen below the equilibrium value

√
C1 as determined in Eq. (53). The

opposite situation is shown on the right panel. In both cases, the field density decays like in Fig. 1. At redshift z = 6.3 × 105,
when H = m, the field starts to oscillate, but its density decays smoothly as that of presureless matter. Because the real and
imaginary parts are exactly in phase, the field is equivalent to a single real scalar field.

C. radiation domination: λ %= 0

If the field has got a quartic self–coupling, λσ4 must be negligible with respect to m2σ2 in the late Universe in order
to drive a matter–like dominated stage with ρφ ∝ a−3. However, a quartic self–coupling is likely to be cosmologically
relevant at early times, whenever the field modulus σ well exceeds λ−1/2 m. In that case, the equation for v – see
relation (47) – reads like

v′′ −
a′′

a
v +

λQ

m3
v3 −

1

v3
= 0 . (56)
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Cosmological evolution of quintessential DM background, for

L =
1

2
g µν ∂µϕ∂νϕ − V (ϕ) . (1)

Should the field be homogeneous, its cosmological energy density would be expressed as

ρϕ ≡ T 0
0 =

ϕ̇2

2
+ V (ϕ) , (2)

whereas the pressure would obtain from Tij ≡ −g ij P so that

Pϕ =
ϕ̇2

2
− V (ϕ) . (3)

If the kinetic term ϕ̇2/2 is small with respect to the contribution from the potential V (ϕ), the equation of state can
match the condition for driving accelerated expansion in the Universe, ωQ ≡ Pϕ/ρϕ < −1/3. Instead, in order to
behave as dark matter today, the field should be pressureless: |Pϕ| # ρϕ. So, the kinetic and potential energies should
cancel out in Eq. (3), a condition automatically fulfilled by a quickly oscillating scalar field averaged over one period
of oscillation. This well–known setup is that of the cosmological axion. It requires a quadratic scalar potential, so
that the kinetic and potential energies both redshift as ϕ2 ∝ a−3 with the Universe expansion and cancel out at any
time during the field dominated stage, which is then equivalent to the usual matter dominated one.

Axions – or more generally, bosonic dark matter – were revived recently due to the undergoing CDM crisis. For
instance, it was noticed in [12] that stucture formation on small scales can be forbidden by quantum mechanics, for
wavelengths smaller than the Compton wavelength – i.e., the minimal spreading of an individual boson wave function.
The latter matches the scale of galactic substructures for an ultra–light mass of order m ∼ 10−22 eV. Alternatively,
one may introduce a self–coupling term [13,14]. As we have seen, the existence of a matter–like dominated stage
requires that the contribution of non–quadratic terms to the potential energy remains subdominant. Nevertheless,
a self–coupling would modify the field behavior in the early Universe, as well as its clustering properties today in
regions where the field is overdense – exactly like for boson stars, which are crucially affected by the presence of a
self–coupling [15]. The self–coupling is also relevant for the issue of field clumps stability, and can explain why dwarf
and low–surface–brightness galaxies have cores with finite density [16].

A remarkable feature with bosonic dark matter is the possibility to form Bose condensates, i.e., large domains
where the field is coherent in phase and is in equilibrium inside its own gravitational potential – like boson stars –
or in that of an external baryonic matter distribution. This opens the possibility to have a very simple and elegant
model for galactic halos, in which rotation curves would follow from simple equations – essentially the Klein–Gordon
wave equation, which governs classical scalar fields as well as Bose condensates. This situation strongly differs from
the more conventional picture of a gas of individual particles – fermions or heavy bosons – for which gravitational
clustering does not lead to universal density profiles and where the shape of galactic halos can only be studied through
technically difficult N–body simulations.

The formation and stability of such condensates is a complicated issue – see e.g. [19–21] – even when the field is
complex and has a global charge – not to be understood as an electric charge, but as a conserved number of quanta
like the baryon or lepton number. For instance, a large condensate can be unstable under fragmentation into smaller
clumps. For a real scalar field with no conserved charge, the issue of stability is even more subtle since the field can
self–annihilate, especially when the condensate core density exceeds a critical value [19]. This property can improve
the agreement with observations [16], since the coupling constant will tune the upper limit on the density of dark
matter cusps at the center of galaxies. However, such a positive feature is far from excluding models with a conserved
charge. In fact, the issue of Bose condensation on galactic scales – in an expanding Universe – has never been studied
in details. The result would depend very much on the scalar potential, and it is difficult to guess what would be the
maximal core density today.

In this work, we will focus on the scenario with a conserved charge, and assume that dark matter consists in a
complex scalar field with a quasi–homogeneous density in the early Universe, producing later galactic halos through
Bose–condensation. The Lagrangian density reads

L = gµν ∂µφ
† ∂νφ − V (φ) . (4)

Throughout this analysis, we will focus on the potential

V = m2φ†φ + λ
{

φ†φ
}2

. (5)

As a prologue to the study of density perturbations, we will follow the evolution of the homogeneous cosmological
background of this field, taking into account the constraints on the scalar potential coming from galactic halos. In a
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FIG. 1. Evolution of the field and matter densities, in the scenario with λ = 0 and m ∼ 10−23 eV. The evolution starts at a
redshift z = 1010 – but we could have equally well started earlier. The initial value of the field density can be chosen arbitrarily,
below or above that of radiation density. After decaying as a−6, the field density reaches a plateau which amplitude has been
fixed according to Eq. (53). This condition ensures a correct value of the density today: ρφ = Ω cdmρ0c . At z = 6.3× 105, when
H = m, the density starts to decrease as a−3, like for presureless matter, and takes over radiation at z # 3× 103.
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FIG. 2. Two possible evolutions of the field real and imaginary parts, in the scenario with λ = 0 and m ∼ 10−23 eV. On
the left panel, the initial field modulus has been chosen below the equilibrium value
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C1 as determined in Eq. (53). The

opposite situation is shown on the right panel. In both cases, the field density decays like in Fig. 1. At redshift z = 6.3 × 105,
when H = m, the field starts to oscillate, but its density decays smoothly as that of presureless matter. Because the real and
imaginary parts are exactly in phase, the field is equivalent to a single real scalar field.

C. radiation domination: λ %= 0

If the field has got a quartic self–coupling, λσ4 must be negligible with respect to m2σ2 in the late Universe in order
to drive a matter–like dominated stage with ρφ ∝ a−3. However, a quartic self–coupling is likely to be cosmologically
relevant at early times, whenever the field modulus σ well exceeds λ−1/2 m. In that case, the equation for v – see
relation (47) – reads like

v′′ −
a′′

a
v +

λQ

m3
v3 −

1

v3
= 0 . (56)
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Same for                             derived from rotation curves

During radiation domination, a′′ = 0 and v is a periodic – elliptic – function, describing non–harmonic oscillations in

the potential V (v) = λQv4/(4m3) + 1/(2 v2), with a minimum at v0 =
{

m3/(λQ)
}1/6

. The period of the oscillations

– expressed in conformal time – is of order m(Qλ)−1/3. So, σ performs damped oscillations with a constant period
∆a ∼ a2H(Qλ)−1/3 with respect to the scale factor. If we furthermore define the conserved pseudo–energy energy of
v by Ev = v′2/2 + V (v), we can express the field density as

ρφ = mQ

{

Ev −
Ha

m
v v′ +

H2a2

2m2
v2
}

a−4 . (57)

Remember that Ha decays as a−1 during radiation domination: a priori, at early times, the field density performs
damped oscillations like the field modulus while at late times it decays smoothly, as for radiation

ρφ = mQEva
−4 . (58)

The transition between both behaviors takes place when H2a2v2 ∼ m2Ev, where v is evaluated at the maximum of
one oscillation: vmax ∼ (4m3Ev/λQ)1/4. Inserting this condition in Eq. (57), we find that the transition between
damped oscillations and smooth decay occurs when ρφ # H4/λ. In practice, this implies that the oscillatory behavior
is generally irrelevant unless λ is fine–tuned to extremely small values – for the ordinary radiation component, the
condition ρrad $ H4 is already realized at the end of inflation. So, Eq. (58) applies even in the early Universe.

Later on, the transition between radiation–like and matter–like behaviors will be effective when the maximal value
of σ during one oscillation, computed from Eq.(56), will be comparable to λ−1/2m. This translates into

σmax =

√

Q

m

vmax

a
=

1

a

(

4mQEv

λ

)1/4

=
m√
λ

⇒ a =

(

4λQEv

m3

)1/4

⇒ ρφ ∼
m4

λ
# (eV)4 . (59)

In the last equality we used the constraint from the size of galactic halos. Since, on the other hand, ρeq ∼ 0.55 (eV)4,
the transition to matter–like behavior occurs slightly before equality. This means that at earlier times, when the field
behaves like radiation, its density should be fine–tuned in order to be close to the radiation density.

This scenario is illustrated on Fig. 3. In order to obtain the correct value of the field and radiation densities today,
ρφ must be adjusted to 0.6 ρrad. This would correspond to an effective number of extra neutrino species of ∆Neff = 5
that is not even allowed by BBN.
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FIG. 3. Evolution of the field and matter densities, in the scenario with m ∼ λ1/4 eV and arbitrary λ. The evolution also
starts at a redshift z = 1010. The field decays first as dark radiation, and then as dark matter. The transition between these
two regimes is constrained by Eq. (59) to take place immediately before matter–radiation equality. In other words, in the early
Universe, the field density must be very close to that of radiation. The simulation gives ρφ = 0.6 ρrad in order to obtain a
correct value of ρφ = ρcdm today (such that Ωcdm h2 = 0.13).
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the transition to matter–like behavior occurs slightly before equality. This means that at earlier times, when the field
behaves like radiation, its density should be fine–tuned in order to be close to the radiation density.

This scenario is illustrated on Fig. 3. In order to obtain the correct value of the field and radiation densities today,
ρφ must be adjusted to 0.6 ρrad. This would correspond to an effective number of extra neutrino species of ∆Neff = 5
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potential distributions in the presence of a given baryonic matter density. We will see that these equations can be
combined into a single non–linear Poisson equation. The solutions are technically difficult to find, first, due to the
non–linearity, and second, because some boundary conditions are given at the center, some others at infinity. So, it is
not possible to follow a lattice approach, in which one would start from a particular point and integrate numerically
grid point by grid point. However we present in section III a recursive method which allows to find all the exact
solutions after a few iterations. In section IV, we compare the galaxy rotation curves obtained in this way with some
observational data. We lay a particular emphasis on the dwarf spiral galaxy DDO 154, for which the rotation curve is
among the most difficult to explain with usual dark matter profiles. We will see that a mass–over–self–coupling ratio
m4/λ ! 50 (eV)4 provides a very good fit to the DDO 154 rotation curve – however at the expense of poor fits to
the largest spiral galaxies. Because the scalar field condensates inside the gravitational potential wells of baryons and
strengthens them, the question of its effects on the inner dynamics of the solar system naturally arises. We derive in
section V the modification of the solar attraction in the presence of the self–interacting scalar field under scrutiny and
show that an anomalous acceleration appears that is constant and that points towards the Sun. We investigate the
limit set on our model by the Pioneer radio data. In Paper II, we studied the cosmological behavior of a homogeneous
scalar field that was assumed to play the role of dark matter at least from the time of matter–radiation equality until
today. This analysis is updated in section VI where we specifically assume m4/λ ! 50 (eV)4. Such a large value point
towards a large total density of the Universe during radiation domination which is at the edge of the current bounds
set in particular by BBN on cosmological parameters. The last section is devoted to a discussion of the strong and
weak aspects of our alternative dark matter model. We finally suggest some further directions of investigation beyond
the simple but restrictive framework of isolated bosonic configurations.

II. GRAVITATIONAL BEHAVIOR

The complex scalar field φ under scrutiny in this article is associated to the Lagrangian density

L = gµν ∂µφ
† ∂νφ − V (φ) , (1)

where the U(1) invariant potential V includes both quadratic and quartic contributions

V (φ) = m2 ϕ†φ + λ
{

φ†φ
}2

. (2)

The gravitational behavior of the system follows the standard GR equations whilst the field φ satisfies the Klein–
Gordon equation

1√
−g

∂µ
{√

−g gµν ∂νφ
}

+
∂V

∂φ†
= 0 , (3)

where gµν denotes the metric. We would like to investigate to which extent the scalar field φ may account for the
dark matter inside galaxies. The problem simplifies insofar as the gravitational fields at stake are weak and static.
In this quasi–Newtonian limit of general relativity, deviations from the Minkowski metric ηµν = diag {1,−1,−1,−1}
are accounted for by the perturbation tensor hµν – from now on, we use the convention c = 1. The Newtonian
gravitational potential Φ = h00/2 is actually a small quantity of order v2esc ∼ 10−7 − 10−6, where vesc denotes the
escape velocity. Our analysis is based on an expansion up to first order in Φ. The baryonic content of galaxies is
described through the energy–momentum tensor

T µν = (ρ b + Pb)U
µUν − Pb gµν , (4)

where Uµ = {1,'v}. Baryons behave as dust with non–relativistic velocities. Actually, because galaxies are virialized
systems – hence the assumption of static gravitational fields – the spatial velocity v is a small quantity of order
vesc ∼

√
Φ. The kinetic pressure–to–mass density ratio is even more negligible since Pb/ρ b ∼ v2 ∼ v2esc ∼ Φ % 1. We

are interested in classical configurations where the field φ is in a coherent state such as

φ {'x, t} =
σ ('x)√

2
exp (− iω t) . (5)

Indeed, one can prove that all stable spherically symmetric configurations can be parameterized in that way [10]. The
time–derivative ∂0φ equals −iω φ, whereas the space–derivative ∂iφ is of order φ/L where L is the physical length of
the configuration. That length – which is related to the parameters m and λ of the potential – is required to be ∼ 1
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FIG. 5. The DDO 154 rotation curve (in red) is fitted with the observed stellar density (in green) while the gas distribution
(in purple) has been artificially enhanced with respect to the observed HI by a rescaling factor.
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FIG. 6. The best fit of the DDO 154 rotation curve (in red) is presented with the observed stellar density (in green) and gas
distribution (in purple). In the left panel, a self–interacting bosonic halo is assumed with m4/λ ≈ 75 eV4 together with the
observed gas density profile. In the right panel, the gas component has been rescaled in order to improve the goodness of fit
and a value of m4/λ ≈ 50 eV4 is derived.

Finally, we have assumed the presence of a self–interacting bosonic halo and applied the recursion method discussed
in section III. The left plot of fig. 6 corresponds to stellar and gas populations as observed while a value of m4/λ ≈ 75
eV4 provides a best χ2 of 16. The agreement with the measured rotation curve is quite good. Notice that the bosonic
halo dominates completely the inner dynamics beyond ∼ 0.5 kpc. More impressive is the right plot of fig. 6 where
the gas distribution has now been rescaled in order to improve the goodness of fit. A best χ2 of ∼ 7 is reached for
ρcgas ≈ 0.35 ρcstars and a value of m4/λ ≈ 50 eV4.

Beside the prototypical example of DDO 154, we have analyzed a set [32] of small and medium size spiral systems for
which measurements of the rotation curve are of high quality. These galaxies have been selected on the requirement
that they have no bulge, very little HI – if any – and a dominant stellar disk that accounts for the dynamics in the
central region. They are also dominated by dark matter as is clear from fig. 7. A self–interacting bosonic halo has
been assumed with m4/λ ≈ 50 eV4. Because of the presence of wiggles in the rotation curves – presumably related
to spiral arms inside the disks – the best χ2 value becomes meaningless. The qualitative agreement is nevertheless
correct except in the case of 545–G5 where the optical radius is ropt = 7.7 kpc. Because the mass m and the coupling λ
define a unique scale of ∼ 2.3 kpc – see relation (25) – the Bose condensate does not extend enough to account for the
dark matter inside large systems. A single self–interacting bosonic halo fails to reproduce at the same time the dark
matter inside light and massive spirals. A possible solution lies in the existence of several small bosonic condensates
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