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The breaking of R-panty allows the llghtest supersymmetnc parhcle (LSP) to decay, and we 
study the cosmological bounds on its mass and lifettme These bounds can be translated into a 
lower hmlt on the neutrino mass when R-panty is broken by a nonzero scalar neutrino VEV, and 
into lower limits on the symmetry breaking parameters when R-panty is broken by exphclt 
couplings m the lagrangxan 

1. Introduction 

Supersymmetr lc  theories have a cont inuous symmetry called the R-symmetry  [1] 
It  is b roken  when supersymmetry is broken,  but  a discrete symmetry usually 
remains  as a remnant ,  the R-pari ty [2]. The R-pari ty may be defined as R = 
( - 1 )  2s+L+3B, where S is the spin, L is the lepton number  and B is the baryon  
n u m b e r  It so happens that any "ord inary"  particle (quark, lepton, Higgs scalar or 
gauge boson)  has R = + 1 Therefore, its supersymmetric par tner  has R = - 1  
Conserva t ion  of R-pan ty  then implies that "supersymmetr lc"  particles are produced 
in  pairs, and  that they always decay into a hghter one the llghtest one (often called 
the LSP) IS then stable 

One  general ly builds models where the R-pan ty  remains unbroken  after super- 
symmet ry  breaking,  because breaking R-pari ty almost inevitably leads to violation 
of lep ton  or ba ryon  number  conservation, and these are supposed to be good 
symmetr ies  at low energies (1 e a round 1 GeV) since no experimental  evidence of 
such violat ions exists 
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R-Parity Violation

Though the D “ 7, 9, 10 operators in Table 2 are just examples, it is sufficient for our purpose

since such higher dimensional operators would usually involve more undetermined parameters

compared to lower dimensional ones, and thus the detailed constraints are strongly model

dependent. For instance, some operators that violate lepton number, but conserve baryon

number, can be constrained by neutrinoless double beta decay [60], while the limit strongly

depends on the form of the operators. Nevertheless, when we assume that baryon and lepton

numbers are violated at the same scale, and that there is no large hierarchy between the

mass scales of baryon and lepton number violation, the constraints on MD from nucleon

decays are in most cases stronger than those from neutrinoless double beta decay (see, e.g.,

Ref. [61].)

4 R-parity Violating Interactions

We now discuss the limits on RPV interactions using the results obtained in the previous

sections. The RPV superpotential is given by

WRPV “ W
p2q
RPV ` W

p3q
RPV, (26)

W
p2q
RPV “ µ1

iHu ¨ Li, (27)

W
p3q
RPV “

1

2
λijkLi ¨ LjE

c
k ` λ1

ijkLi ¨ QiD
c
k `

1

2
λ2
ijkU

c
i D

c
jD

c
k . (28)

The explicit Lagrangian including soft supersymmetry breaking terms is shown in the Ap-

pendix. We will first review the bounds derived in the case of weak scale supersymmetry [10]

and contrast them with bounds obtained in high-scale supersymmetry. These bounds are

derived from both the cosmological preservation of the baryon asymmetry and the experi-

mental limits on baryon and/or lepton number violating processes including proton decay.

We will also comment on the limits on the RPV parameters when we require a sufficiently

long-lived gravitino as the dark matter.

In general the RPV mass parameter µ1
i depends on lepton flavor, but here we omit the

flavor dependence for simplicity, and take µ1
i ” µ1. (For a more detailed discussion, see,

e.g., [62, 63].) Since lepton number is not conserved, L and Hd cannot be distinguished,

and thus there is a field basis dependence in defining L and Hd fields. For instance, if

L Ñ p1 ´ ϵ2q1{2L ` ϵHd and Hd Ñ p1 ´ ϵ2q1{2Hd ´ ϵL with ϵ “ µ1{
a

µ2 ` µ12 and µ is the

µ-parameter in the MSSM superpotential, we can eliminate the bilinear RPV term at the

expense of generating trilinear RPV terms, such as yuϵLLEc and ydϵQLDc. For simplicity
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But they are not excluded R-panty would then be broken, but one expects such a 
breaking to be qmte weak This means that the llghtest supersymmetnc particle 
(LSP) can decay, but will be very long-lived Such a pamcle can play havoc in the 
early Universe, and we must require its decay not to dasturb the known evolution of 
the Universe This sets bounds on its mass and its hfetlme, which ~,11 be studied in 
sect 2 

Sect 3 then considers different ways to break R-parity It is spontaneously 
broken if some scalar field gets a nonzero vacuum expectation value or exphcitly, if 
R-violating couphngs are allowed m the lagrangian Baryon number cannot be 
spontaneously broken because all neutral scalars haze zero baryon number Lepton 
number can be spontaneously broken if the potential allows lot a nonzero scalar 
neutrino VEV but, as we shall see, this IS extremely difficult Exphclt breaking is far 
easier to achieve, but of course less restrictive 

2. Cosmological analysis 

Any supersymmetrlc model is associated with the spectrum ot superpartners of 
ordinary particles The llghtest member of this spectrum (LSP) is the relevant 
pamcle to our analysis We assume that ~t ~s neutral Indeed, this is the case m man)' 
models Moreover, a charged LSP annihilates strongly during the bag bang and the 
density of its remnants is completely neghglble Its subsequent decay discretely 
leads the population to nothing This situation is not interesting for cosmology, and 
we disregard it The LSP is a mixing between the gaugmos (the fermlons associated 
with the gauge bosons) and the hlggslnos (the fermlomc partners of the Higgs 
bosons) A small neutrino component too might be included The gauge interactions 
of th~s particle depend on the mixing angles among its ~anous constatuents To 
make matters clear, we assume that the LSP ,s a photIno We will show later that the 
situation is quahtatlvely the same in the case of a general mixing It has been argued 
that if the photlno is stable, ItS mass is severely constrained by cosmology [3] What 
does happen, now, if the breaking of R-parity makes the photlno unstable ° In thas 
section, we intend to analyse the cosmological behavior of an unstable photino The 
relevant parameters for this study are the photmo m a s s  Mphot .... and its lifetime ~- 
We will derive bounds o n  Mpho t  .... and ~- The photmo "~ may decay into 

"~ ~ 7 + neutrino. 

'7 --' fermion + antlfermaon + neutral lepton, 

? ~ fermlon + antlfermlon + charged lepton, 

? --* 3 quarks (2 1) 

The decay products fall into two categories 
(1) The electromagnetic particles (photon, charged lermlons) These product~ 

strongly interact with thear surroundings 

Seems quaint to consider a photino LSP
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Fig 10 Lepton number "~lolatlng decays of a photmo (the dark blob marks the L-violating couphng) 

The  n e u t n n o  remains massless at the tree-level m this model, but  there are 
contr ibut ions  to ~ts mass at the one-loop level, due to qua rk / squa rk  or lep ton/s lep-  
ton  exchanges [23] Requlrxng the neutrino mass to be less than 100 eV [36] only 
gwes 

~keb b "~ 5 X 10 -3 ,  X~,, < 2 × 10 2 (3 45) 

The neutrlnoless double beta decay [40] is a httle better, since it requires a neutrino 
mass less than 5 6 eV, leading to 

~keb b < 10 -3 , ~ke, , < 5 X l0  -3 (3 46) 

We see that  the best we can acl~eve is an upper  bound  of the order of 10 4 for a 
lepton number  violating Yukawa couphng 

The  phot lno  can decay into a neutrino, plus a fermlon antlfermlon pair (fig 10) 
with a hfet lme 

' r  10 -11 S [1 5 = GeV/Mphotmo] [msf ....... / 1 0 0  GeVI4/X~ODo~LLE (3 47) 

It can also decay into a neutrino and a photon  through a one-loop diagram (fig 
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Fig 8 Ba~on number xlolatmg decays (a) proton decay mto a photlno (b) photlno decay mto a 
bawon The dark blob marks the B-~lolatlng couphng 

violation, through the diagram of fig 8a into a photlno and plons [21] A rough 
estimate of the decay rate leads to an extremely small Yukawa coupling, XuI)D < 
10-2°or  10 25, for a squark mass of 100 GeV It is more hkely that the photlno is in 
fact heavier than the proton, and that proton decay is klnematlcally forbidden But 
the reverse is then possible, and the photlno can decay into a quark and an 
antlsquark, and the antlsquark in turn decays mto a quark pair (thus violating 
baryon number  by one unit) The end result is a decay of the photmo into a baryon 
(plus mesons, which give an electromagnetic shower as end products), according to 
the diagram of fig 8b The consequences on nucleosynthesis of an Injection of 
baryons (and antIbaryons) have not yet been studied, but the electromagnetic 
shower will anyhow cause a lot of damage, and we can safely assume that the bound 
derived m sect 2 apply The photino hfetime 15 given as usual by 

'r ~ 10 l l s  [1 GeV/Mphotmo]5[M,quark/lO0 GeVl4/X~r)i) (3 35) 

The cosmological limit on hfetlme of a photino heavier than 1 GeV ~tems from the 
nucleosynthesls constraint (curve e of fig 2b), and for a 100 GeV slepton scales as 

T < l O 4 s  [gphotmo/1GeV] 12 (3 36) 

Thts lmphes a lower hmtt on the baryon violating Yukawa coupling 

~'UDD > 3 X 1 0 - x [ 1  GeV/Mphotmo] 3 1 [ M,quark/100 a e V ]  2 (3 37) 
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Fig 2 Cosmological bound~ on the photmo lifetime as a function of ~ts mass Fig 2a sho~s the limit 
from Da,,]s" e,~penment on solar neutnnos (curve a), the constraints from the energy densttv of the 
Umverse (curve bl from the overall density and cur~e b2 from the radiation density hmit set by theorle~ 
of galaxy formation), and the limit on the cosmic gamma-ray background (cur~e c) The overall en'~elope 
of the constraints shov~n m fig 2b ~s also drawn for comparison purpose~ Fig 2b ~ho~s the hmlt 
which comes from CBR dlstoruon (curxe d), the nucleosvnthcsls bound (curxe e) and the supernova 

limit (cur~e f) 

W I P s  are  ultrarelatlviStlC The i r  energ~y is t he re fo re  c o n t i n u o u s l y  r e d - s h i f t e d  E a c h  
p h o t l n o  d e c a y  also p r o d u c e s  e l e c t r o m a g n e t i c  par t ic les ,  bu t  b e  will ana lyse  this case  
l a t e r  on  H e r e  we  ju s t  c o n c e n t r a t e  on  the H u b b l e  p a r a m e t e r  H tha t  dr ives  the  
e x p a n s i o n  o f  the  U n i v e r s e  

H = [~qrGPtotal] 1 2 (2 22) 

Money Plot

Pioneering work setting 
constraints from:

solar neutrinos,
cosmic energy density,
radiation density,
CMB distortion,
BBN,
Supernovae



R-Parity Violation + Spalerons

Though the D “ 7, 9, 10 operators in Table 2 are just examples, it is sufficient for our purpose

since such higher dimensional operators would usually involve more undetermined parameters

compared to lower dimensional ones, and thus the detailed constraints are strongly model

dependent. For instance, some operators that violate lepton number, but conserve baryon

number, can be constrained by neutrinoless double beta decay [60], while the limit strongly

depends on the form of the operators. Nevertheless, when we assume that baryon and lepton

numbers are violated at the same scale, and that there is no large hierarchy between the

mass scales of baryon and lepton number violation, the constraints on MD from nucleon

decays are in most cases stronger than those from neutrinoless double beta decay (see, e.g.,

Ref. [61].)

4 R-parity Violating Interactions

We now discuss the limits on RPV interactions using the results obtained in the previous

sections. The RPV superpotential is given by

WRPV “ W
p2q
RPV ` W

p3q
RPV, (26)

W
p2q
RPV “ µ1

iHu ¨ Li, (27)

W
p3q
RPV “

1

2
λijkLi ¨ LjE

c
k ` λ1

ijkLi ¨ QiD
c
k `

1

2
λ2
ijkU

c
i D

c
jD

c
k . (28)

The explicit Lagrangian including soft supersymmetry breaking terms is shown in the Ap-

pendix. We will first review the bounds derived in the case of weak scale supersymmetry [10]

and contrast them with bounds obtained in high-scale supersymmetry. These bounds are

derived from both the cosmological preservation of the baryon asymmetry and the experi-

mental limits on baryon and/or lepton number violating processes including proton decay.

We will also comment on the limits on the RPV parameters when we require a sufficiently

long-lived gravitino as the dark matter.

In general the RPV mass parameter µ1
i depends on lepton flavor, but here we omit the

flavor dependence for simplicity, and take µ1
i ” µ1. (For a more detailed discussion, see,

e.g., [62, 63].) Since lepton number is not conserved, L and Hd cannot be distinguished,

and thus there is a field basis dependence in defining L and Hd fields. For instance, if

L Ñ p1 ´ ϵ2q1{2L ` ϵHd and Hd Ñ p1 ´ ϵ2q1{2Hd ´ ϵL with ϵ “ µ1{
a

µ2 ` µ12 and µ is the

µ-parameter in the MSSM superpotential, we can eliminate the bilinear RPV term at the

expense of generating trilinear RPV terms, such as yuϵLLEc and ydϵQLDc. For simplicity

11

Sphalerons in equilibrium between

160 GeV < T < 1012 GeV

If an additional B-L violating operator is in 
equilibrium at the same time

⇒ Washout of the primordial baryon asymmetry

Constrains µ0,�,�0,�00
<latexit sha1_base64="FruynFikMCqiQtZTS1MkXbFen7g=">AAACJHicbVBLSwMxGMzWV62vVY9egkXwIGW3Cgpeil48VrAP6G5LNpu2oUl2SbJCWfpjvPhXvHjwgQcv/hbT7iLaOpAwzHxD8k0QM6q043xahaXlldW14nppY3Nre8fe3WuqKJGYNHDEItkOkCKMCtLQVDPSjiVBPGCkFYyup37rnkhFI3GnxzHxORoI2qcYaSP17EuPJ10vlpSTE+gxEwzRD5k3umkmZPekZ5edijMDXCRuTsogR71nv3lhhBNOhMYMKdVxnVj7KZKaYkYmJS9RJEZ4hAakY6hAnCg/nS05gUdGCWE/kuYIDWfq70SKuFJjHphJjvRQzXtT8T+vk+j+hZ9SESeaCJw91E8Y1BGcNgZDKgnWbGwIwpKav0I8RBJhbXotmRLc+ZUXSbNacU8r1duzcu0qr6MIDsAhOAYuOAc1cAPqoAEweABP4AW8Wo/Ws/VufWSjBSvP7IM/sL6+AWAnpUw=</latexit>



and since observables do not depend on the choice of basis, we will work in the basis that

explicitly keeps the bilinear term (27) given in WRPV.

4.1 Limits on µ1

4.1.1 Weak scale supersymmetry

As discussed above, there are strong constraints on baryon and lepton number violating

operators whose induced interactions are simultaneously in equilibrium with the sphaleron

interactions. In the case of an R-parity violating bilinear LHu term, one-to-two processes

involving a Higgsino, lepton, and a gauge boson will be induced. From Eq. (11), the thermally

averaged rate at a temperature, T for these lepton number violating interactions is given by

[10, 32]

Γ1Ñ2 “
g2θ2T

16ζp3qπ
» 0.016g2

µ12

m2
f

T , (29)

where g is a gauge coupling, and θ » µ1{mf is the mixing angle induced by µ1 for a

fermion with mass mf . We require that this lepton number violating interaction is out

of equilibrium. As such, we require the interaction rate (29) is less than the Hubble rate,

H »
a
π2g˚{90 T 2{MP . This implies that

µ12 ă 20
?
g˚

T 3

MP

, (30)

where the fermions have a thermal mass, mf „ gT . We further insist that any lepton

number violating rate involving µ1 remains out of equilibrium while sphaleron interactions

are in equilibrium, i.e., between the weak scale Tc and Tsph. As one can see, the limit (30)

is strongest for T of order the weak scale (case (a) corresponding to D “ 3). For weak scale

supersymmetry, the fermion can be either a lepton or Higgsino, g˚ “ 915{4 and at Tc one

obtains the limit [10]

µ1 ă 2.3 ˆ 10´5GeV . (31)

For weak scale supersymmetry this limit translates to ϵ À 2.3 ˆ 10´7.

In general, the RPV bilinear term induces a non-zero neutrino mass via a dimension

five operator. The mixing angle between neutrinos and the Higgsino is given by µ1{µ, and
through the Higgsino-Higgs-gaugino (wino or bino) coupling, we obtain a dimension five

operator of the form:

L5 »
1

M5

νLνLhh,
1

M5

» ϵ2
g22M1 ` g21M2

M1M2p1 ` tan2 βq
, (32)

12

1 to 2 processes involving a Higgsino, lepton and gauge boson
with rate:
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Out of equilibrium ⇒
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Though the D “ 7, 9, 10 operators in Table 2 are just examples, it is sufficient for our purpose

since such higher dimensional operators would usually involve more undetermined parameters

compared to lower dimensional ones, and thus the detailed constraints are strongly model

dependent. For instance, some operators that violate lepton number, but conserve baryon

number, can be constrained by neutrinoless double beta decay [60], while the limit strongly

depends on the form of the operators. Nevertheless, when we assume that baryon and lepton

numbers are violated at the same scale, and that there is no large hierarchy between the

mass scales of baryon and lepton number violation, the constraints on MD from nucleon

decays are in most cases stronger than those from neutrinoless double beta decay (see, e.g.,

Ref. [61].)

4 R-parity Violating Interactions

We now discuss the limits on RPV interactions using the results obtained in the previous

sections. The RPV superpotential is given by
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The explicit Lagrangian including soft supersymmetry breaking terms is shown in the Ap-

pendix. We will first review the bounds derived in the case of weak scale supersymmetry [10]

and contrast them with bounds obtained in high-scale supersymmetry. These bounds are

derived from both the cosmological preservation of the baryon asymmetry and the experi-

mental limits on baryon and/or lepton number violating processes including proton decay.

We will also comment on the limits on the RPV parameters when we require a sufficiently

long-lived gravitino as the dark matter.

In general the RPV mass parameter µ1
i depends on lepton flavor, but here we omit the

flavor dependence for simplicity, and take µ1
i ” µ1. (For a more detailed discussion, see,

e.g., [62, 63].) Since lepton number is not conserved, L and Hd cannot be distinguished,

and thus there is a field basis dependence in defining L and Hd fields. For instance, if

L Ñ p1 ´ ϵ2q1{2L ` ϵHd and Hd Ñ p1 ´ ϵ2q1{2Hd ´ ϵL with ϵ “ µ1{
a

µ2 ` µ12 and µ is the

µ-parameter in the MSSM superpotential, we can eliminate the bilinear RPV term at the

expense of generating trilinear RPV terms, such as yuϵLLEc and ydϵQLDc. For simplicity
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and since observables do not depend on the choice of basis, we will work in the basis that

explicitly keeps the bilinear term (27) given in WRPV.

4.1 Limits on µ1
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involving a Higgsino, lepton, and a gauge boson will be induced. From Eq. (11), the thermally

averaged rate at a temperature, T for these lepton number violating interactions is given by

[10, 32]

Γ1Ñ2 “
g2θ2T

16ζp3qπ
» 0.016g2

µ12

m2
f

T , (29)

where g is a gauge coupling, and θ » µ1{mf is the mixing angle induced by µ1 for a

fermion with mass mf . We require that this lepton number violating interaction is out

of equilibrium. As such, we require the interaction rate (29) is less than the Hubble rate,

H »
a
π2g˚{90 T 2{MP . This implies that

µ12 ă 20
?
g˚

T 3

MP

, (30)

where the fermions have a thermal mass, mf „ gT . We further insist that any lepton

number violating rate involving µ1 remains out of equilibrium while sphaleron interactions

are in equilibrium, i.e., between the weak scale Tc and Tsph. As one can see, the limit (30)

is strongest for T of order the weak scale (case (a) corresponding to D “ 3). For weak scale

supersymmetry, the fermion can be either a lepton or Higgsino, g˚ “ 915{4 and at Tc one

obtains the limit [10]

µ1 ă 2.3 ˆ 10´5GeV . (31)

For weak scale supersymmetry this limit translates to ϵ À 2.3 ˆ 10´7.

In general, the RPV bilinear term induces a non-zero neutrino mass via a dimension

five operator. The mixing angle between neutrinos and the Higgsino is given by µ1{µ, and
through the Higgsino-Higgs-gaugino (wino or bino) coupling, we obtain a dimension five

operator of the form:

L5 »
1

M5

νLνLhh,
1

M5

» ϵ2
g22M1 ` g21M2

M1M2p1 ` tan2 βq
, (32)
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1 to 2 processes involving a scalar and two fermions or 
2 to 2 processes involving four scalars
with rates:

Out of equilibrium ⇒

Campbell, Davidson, 
Ellis, Olive

or ϵ À 0.57.

Note that if W p2q
RPV is the only source of neutrino mass, our previous limit on M5 ă 1014.8

GeV translates into a lower bound on µ1,

µ1 ą 4 ˆ 10´8GeV1{2 rm1{2µp1 ` tan2 βq1{2{g « 1.5 ˆ 1013GeV . (37)

As discussed in Section 3, the lower limit can be removed if there is another source for

generating neutrino masses that can explain the neutrino oscillation data.

4.2 Limits on λ, λ1, λ2

4.2.1 D “ 4, 5

The quartic couplings in Eq. (28) can lead to either one-to-two processes (involving a scalar

and two fermions) or two-to-two processes (involving four scalars) which violate baryon

and/or lepton number. The rates for these processes taken from Table 1 can be written as

[10]

Γ2Ñ2 “
λ2y2T

128ζp3qπ3
» 2 ˆ 10´4λ2y2T , (38)

Γ1Ñ2 “
λ2m2

0

16ζp3qπT
» 0.016λ2

m2
0

T
, (39)

where λ is a generic RPV quartic coupling in (28) and m0 ă T is the scalar mass. The rate

(38) depends on the Standard Model Yukawa coupling y, because the baryon/lepton number

violating processes actually arise from a cross term in the F -term in the scalar potential.

In weak scale supersymmetry, these processes will be in equilibrium unless λ is quite

small, and the limit on λ is derived by comparing these rates with the Hubble rate. This

yields the limits

λ ă 1.2 ˆ 10´6y´1 2 Ø 2 , (40)

λ ă 1.4 ˆ 10´7 1 Ø 2 , (41)

where we have evaluated the limit at T „ m0 „ Tc in the one-to-two rate.

Once again, in the case of high-scale supersymmetry, when all sparticle masses are greater

than the inflationary scale, the above limits are no longer applicable as there are no sparticles

in the thermal bath at the time when sphaleron interactions are in equilibrium. For the RPV
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Also limits from higher order operators
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Gravitino Mass Limits

m3/2 < 4 TeV unless(!) the susy spectrum lies 
above the inflationary scale.

For Msusy ~ F1/2 > minfl ~ 3 × 1013 GeV

3

ators of supersymmetry breaking2. We expect ⇤mess �
MSUSY . Thus MSUSY > m� translates to F > m

2
�
. The

gravitino mass is also determined by F [39],

m3/2 =
Fp
3MP

(6)

And hence we have a lower bound on the gravitino mass
given by

m3/2 >
m

2
�p

3MP

' 0.2 EeV (7)

Thus we have a gravitino mass gap between 4 TeV and
0.2 EeV which remains cosmologically problematic.

B. Gravitino Production

Clearly the LHC bounds can be satisfied if the sparticle
mass spectrum lies above a few TeV. The direct detection
limits can also be satisfied as the spectrum approaches
its upper limit [7]. It is also possible that the dark matter
lies beyond the MSSM and has weaker couplings to mat-
ter, e.g. through a t-channel exchange of a massive Z’ or
Higgs as shown in [44] or invoking a pseudoscalar or pure
axial mediator to velocity suppress �

scat

N
[45, 46]. Fur-

thermore, if the dark matter couples too weakly with the
standard model, it will never reach thermal equilibrium
as its production rate is dn

dt
= n

2
�
h�vi. The particle is

frozen in during the process of thermalization. The weak
coupling of the dark sector with the standard model can
be due to either an e↵ectively small coupling (of the or-
der of 10�10 ) [47] or because the mass of the mediator
between the two sectors is very large, as in the case of
Non-Equilibrium Thermal Dark Matter (NETDM) mod-
els [49].

By increasing the SUSY mass scale, we have also re-
moved most of the standard gravitino production mech-
anisms. Namely both NSLP decay, and the thermal pro-
duction from standard model annihilations such as gluon,
gluon ! gluino, gravitino are no longer kinematically al-
lowed. The rate for the latter is well known [40, 41] and
scales as � ⇠ T

3
M

2
SUSY

/M
2
P
m

2
3/2, where we have as-

sumed predominantly goldstino production in the limit
m3/2 ⌧ MSUSY . In this case, the gravitino abundance
is approximately n3/2/n� ⇠ �/H ⇠ TM

2
SUSY

/MPm
2
3/2,

where we have simply taken the Hubble parameter as
T

2
/MP .

In the limit that the SUSY mass scale is above the
inflationary scale, there remains, however, (at least) two
sources of gravitino production. Inflaton decay to grav-
itinos [41, 42], and thermal production of two gravitinos

2 These messengers could in principle also play a role in restoring
unification at high scale.

from the thermal bath (gluon, gluon ! gravitino, grav-
itino) [43] as this is only kinematically allowed channel.
A careful computation of the gravitino production rate
was derived in [43]

R = n
2h�vi ' 21.65⇥ T

12

F 4
(8)

where n is the number density of incoming states and we
see that the rate has a strong dependence on temperature
and is even stronger than the NETDM case [49] where
the dependence is R(T ) / T

8. This dependence can be
easily ascertained on dimensional grounds. Recall that
n / T

3, and for gravitino production, we expect h�vi /
T

6
/F

4. The consequences of such a high temperature
dependence are important: we expect that all gravitino
production will occur early and rapidly in the reheating
process. This di↵ers from the feably coupled case [47]
where the smallness of the dark matter coupling to the
standard model bath renders the production rate slower.

From the rate R(T ), we can determine that � ⇠
R/n ⇠ T

9
/M

4
P
m

4
3/2 (again assuming m3/2 ⌧ MSUSY )

leading to a gravitino abundance n3/2/n� ⇠ �/H ⇠
T

7
/M

3
P
m

4
3/2. More precisely, we find,

⌦3/2h
2 ' 0.11

✓
0.1 EeV

m3/2

◆3 ✓
TRH

2.0⇥ 1010 GeV

◆7

(9)

In the absence of direct inflaton decays, a gravitino at the
lower mass limit (7) would require a reheating tempera-
ture of roughly 3 ⇥ 1010 GeV, above the upper limit al-
lowed by the relic abundance constraint (TR . 107 GeV)
in the more common thermal scenario [40], thus favoring
thermal leptogenesis [48].

C. Consequences for inflationary models

The reheating temperature appearing in Eq.(9) is gen-
erated by the decay of an inflaton field � of mass m� and
width ��. We assume that the decay and thermalization
occur instantaneously at the time t�, ��t� = 2��/3H =
c, where c ⇡ 1.2 is a constant. In this case, the reheating
temperature is given by [41, 50]

TRH =

✓
10

gs

◆1/4 ✓2�� MP

⇡ c

◆1/2

= 0.55
y�

2⇡

✓
m� MP

c

◆1/2

(10)
where we have defined a standard ”yukawa”-like coupling

y� of the inflaton field to the thermal bath, �� =
y
2
�

8⇡m�

and gs is the e↵ective number of light degrees of freedom
in this case set by the Standard Model, gs = 427/4. We
can then re-express the relic abundance (9) as function
of y�:

⌦3/2h
2 ' 0.11

✓
0.1 EeV

m3/2

◆3 ✓
m�

3⇥ 1013GeV

◆7/2 ✓
y�

2.9⇥ 10�5

◆7

(11)
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B. Gravitino Production

Clearly the LHC bounds can be satisfied if the sparticle
mass spectrum lies above a few TeV. The direct detection
limits can also be satisfied as the spectrum approaches
its upper limit [7]. It is also possible that the dark matter
lies beyond the MSSM and has weaker couplings to mat-
ter, e.g. through a t-channel exchange of a massive Z’ or
Higgs as shown in [44] or invoking a pseudoscalar or pure
axial mediator to velocity suppress �

scat

N
[45, 46]. Fur-

thermore, if the dark matter couples too weakly with the
standard model, it will never reach thermal equilibrium
as its production rate is dn

dt
= n

2
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h�vi. The particle is

frozen in during the process of thermalization. The weak
coupling of the dark sector with the standard model can
be due to either an e↵ectively small coupling (of the or-
der of 10�10 ) [47] or because the mass of the mediator
between the two sectors is very large, as in the case of
Non-Equilibrium Thermal Dark Matter (NETDM) mod-
els [49].

By increasing the SUSY mass scale, we have also re-
moved most of the standard gravitino production mech-
anisms. Namely both NSLP decay, and the thermal pro-
duction from standard model annihilations such as gluon,
gluon ! gluino, gravitino are no longer kinematically al-
lowed. The rate for the latter is well known [40, 41] and
scales as � ⇠ T
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sumed predominantly goldstino production in the limit
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In the limit that the SUSY mass scale is above the
inflationary scale, there remains, however, (at least) two
sources of gravitino production. Inflaton decay to grav-
itinos [41, 42], and thermal production of two gravitinos

2 These messengers could in principle also play a role in restoring
unification at high scale.

from the thermal bath (gluon, gluon ! gravitino, grav-
itino) [43] as this is only kinematically allowed channel.
A careful computation of the gravitino production rate
was derived in [43]

R = n
2h�vi ' 21.65⇥ T
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F 4
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where n is the number density of incoming states and we
see that the rate has a strong dependence on temperature
and is even stronger than the NETDM case [49] where
the dependence is R(T ) / T

8. This dependence can be
easily ascertained on dimensional grounds. Recall that
n / T

3, and for gravitino production, we expect h�vi /
T
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4. The consequences of such a high temperature
dependence are important: we expect that all gravitino
production will occur early and rapidly in the reheating
process. This di↵ers from the feably coupled case [47]
where the smallness of the dark matter coupling to the
standard model bath renders the production rate slower.

From the rate R(T ), we can determine that � ⇠
R/n ⇠ T

9
/M

4
P
m

4
3/2 (again assuming m3/2 ⌧ MSUSY )

leading to a gravitino abundance n3/2/n� ⇠ �/H ⇠
T

7
/M

3
P
m

4
3/2. More precisely, we find,

⌦3/2h
2 ' 0.11

✓
0.1 EeV

m3/2

◆3 ✓
TRH

2.0⇥ 1010 GeV

◆7

(9)

In the absence of direct inflaton decays, a gravitino at the
lower mass limit (7) would require a reheating tempera-
ture of roughly 3 ⇥ 1010 GeV, above the upper limit al-
lowed by the relic abundance constraint (TR . 107 GeV)
in the more common thermal scenario [40], thus favoring
thermal leptogenesis [48].

C. Consequences for inflationary models

The reheating temperature appearing in Eq.(9) is gen-
erated by the decay of an inflaton field � of mass m� and
width ��. We assume that the decay and thermalization
occur instantaneously at the time t�, ��t� = 2��/3H =
c, where c ⇡ 1.2 is a constant. In this case, the reheating
temperature is given by [41, 50]
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where we have defined a standard ”yukawa”-like coupling

y� of the inflaton field to the thermal bath, �� =
y
2
�

8⇡m�

and gs is the e↵ective number of light degrees of freedom
in this case set by the Standard Model, gs = 427/4. We
can then re-express the relic abundance (9) as function
of y�:
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and since observables do not depend on the choice of basis, we will work in the basis that

explicitly keeps the bilinear term (27) given in WRPV.

4.1 Limits on µ1

4.1.1 Weak scale supersymmetry

As discussed above, there are strong constraints on baryon and lepton number violating

operators whose induced interactions are simultaneously in equilibrium with the sphaleron

interactions. In the case of an R-parity violating bilinear LHu term, one-to-two processes

involving a Higgsino, lepton, and a gauge boson will be induced. From Eq. (11), the thermally

averaged rate at a temperature, T for these lepton number violating interactions is given by

[10, 32]

Γ1Ñ2 “
g2θ2T

16ζp3qπ
» 0.016g2

µ12

m2
f

T , (29)

where g is a gauge coupling, and θ » µ1{mf is the mixing angle induced by µ1 for a

fermion with mass mf . We require that this lepton number violating interaction is out

of equilibrium. As such, we require the interaction rate (29) is less than the Hubble rate,

H »
a
π2g˚{90 T 2{MP . This implies that

µ12 ă 20
?
g˚

T 3

MP

, (30)

where the fermions have a thermal mass, mf „ gT . We further insist that any lepton

number violating rate involving µ1 remains out of equilibrium while sphaleron interactions

are in equilibrium, i.e., between the weak scale Tc and Tsph. As one can see, the limit (30)

is strongest for T of order the weak scale (case (a) corresponding to D “ 3). For weak scale

supersymmetry, the fermion can be either a lepton or Higgsino, g˚ “ 915{4 and at Tc one

obtains the limit [10]

µ1 ă 2.3 ˆ 10´5GeV . (31)

For weak scale supersymmetry this limit translates to ϵ À 2.3 ˆ 10´7.

In general, the RPV bilinear term induces a non-zero neutrino mass via a dimension

five operator. The mixing angle between neutrinos and the Higgsino is given by µ1{µ, and
through the Higgsino-Higgs-gaugino (wino or bino) coupling, we obtain a dimension five

operator of the form:

L5 »
1

M5

νLνLhh,
1

M5

» ϵ2
g22M1 ` g21M2

M1M2p1 ` tan2 βq
, (32)

12

1 to 2 processes not applicable if all susy particles are heavy
But dimension 5 operators are still generated
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Though the D “ 7, 9, 10 operators in Table 2 are just examples, it is sufficient for our purpose

since such higher dimensional operators would usually involve more undetermined parameters

compared to lower dimensional ones, and thus the detailed constraints are strongly model

dependent. For instance, some operators that violate lepton number, but conserve baryon

number, can be constrained by neutrinoless double beta decay [60], while the limit strongly

depends on the form of the operators. Nevertheless, when we assume that baryon and lepton

numbers are violated at the same scale, and that there is no large hierarchy between the

mass scales of baryon and lepton number violation, the constraints on MD from nucleon

decays are in most cases stronger than those from neutrinoless double beta decay (see, e.g.,

Ref. [61].)

4 R-parity Violating Interactions

We now discuss the limits on RPV interactions using the results obtained in the previous

sections. The RPV superpotential is given by

WRPV “ W
p2q
RPV ` W

p3q
RPV, (26)

W
p2q
RPV “ µ1

iHu ¨ Li, (27)

W
p3q
RPV “

1

2
λijkLi ¨ LjE

c
k ` λ1

ijkLi ¨ QiD
c
k `

1

2
λ2
ijkU

c
i D

c
jD

c
k . (28)

The explicit Lagrangian including soft supersymmetry breaking terms is shown in the Ap-

pendix. We will first review the bounds derived in the case of weak scale supersymmetry [10]

and contrast them with bounds obtained in high-scale supersymmetry. These bounds are

derived from both the cosmological preservation of the baryon asymmetry and the experi-

mental limits on baryon and/or lepton number violating processes including proton decay.

We will also comment on the limits on the RPV parameters when we require a sufficiently

long-lived gravitino as the dark matter.

In general the RPV mass parameter µ1
i depends on lepton flavor, but here we omit the

flavor dependence for simplicity, and take µ1
i ” µ1. (For a more detailed discussion, see,

e.g., [62, 63].) Since lepton number is not conserved, L and Hd cannot be distinguished,

and thus there is a field basis dependence in defining L and Hd fields. For instance, if

L Ñ p1 ´ ϵ2q1{2L ` ϵHd and Hd Ñ p1 ´ ϵ2q1{2Hd ´ ϵL with ϵ “ µ1{
a

µ2 ` µ12 and µ is the

µ-parameter in the MSSM superpotential, we can eliminate the bilinear RPV term at the

expense of generating trilinear RPV terms, such as yuϵLLEc and ydϵQLDc. For simplicity
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where M1pM2q are the bino (wino) masses and g2pg1q is the SUp2qLpUp1qY q gauge coupling.

In weak scale supersymmetry models, the limit (31) is stronger than the limit from

neutrino masses [62, 64] which comes from the dimension five operator with the constraint

given in Table 2. As one can see from Table 2, the strongest limit from a dimension five

two-to-two process is obtained by requiring the out-of-equilibrium condition to hold at the

highest possible scale, which in this case is Tsph (case (b)). For weak scale supersymmetry,

the limit on M5 becomes

M5 ą
pc5TMP q1{2

b
0.33g1{2

˚

« 2.8 ˆ 1013GeV , (33)

for T “ Tsph and g˚ “ 915{4 (the change in g˚ accounts for the slight difference with respect

to the limit in Table 2). This translates to the limit

µ1 ă 1.9 ˆ 10´7GeV´1{2 rm1{2µp1 ` tan2 βq1{2{g « 4.4 ˆ 10´4GeV , (34)

for µ „ M1 „ M2 „ rm „ 100 GeV, and tan β « 1. We assume a generic gauge coupling

g „ 0.6 throughout. In this case, ϵ À 4.4 ˆ 10´6.

4.1.2 High-scale supersymmetry

In the case of high-scale supersymmetry, we assume that all sparticles are heavier than the

inflationary mass scale mI „ 3 ˆ 1013 GeV, and we denote the typical sparticle mass scale

as rm ą mI . As all sparticle masses are greater than Tsph, there are no sparticles in the

thermal bath when sphalerons are in equilibrium and the limit from one-to-two processes

is not applicable. Nevertheless, the limit from the effective dimension five operator is valid

when the heavy sparticles are integrated out. Since only Standard Model particles are in

the thermal bath, g˚ “ 427{4 and we can use the limit on M5 from Table 2 (case (b)). The

limit on µ1 becomes

µ1 ă 1.7 ˆ 10´7GeV´1{2 rm1{2µp1 ` tan2 βq1{2{g « 6.6 ˆ 1013GeV , (35)

for µ „ M1 „ M2 „ rm „ 3 ˆ 1013 GeV, and tan β « 1. In this case, ϵ À 2.2.

As one can also see from Table 2, the laboratory limit in this case is in fact the strongest

limit on µ1. Using M5 ą 5 ˆ 1014 GeV, we obtain

µ1 ă 4.5 ˆ 10´8GeV´1{2 rm1{2µp1 ` tan2 βq1{2{g « 1.7 ˆ 1013GeV , (36)
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µ1 ă 1.7 ˆ 10´7GeV´1{2 rm1{2µp1 ` tan2 βq1{2{g « 6.6 ˆ 1013GeV , (35)

for µ „ M1 „ M2 „ rm „ 3 ˆ 1013 GeV, and tan β « 1. In this case, ϵ À 2.2.

As one can also see from Table 2, the laboratory limit in this case is in fact the strongest

limit on µ1. Using M5 ą 5 ˆ 1014 GeV, we obtain

µ1 ă 4.5 ˆ 10´8GeV´1{2 rm1{2µp1 ` tan2 βq1{2{g « 1.7 ˆ 1013GeV , (36)
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or ϵ À 0.57.

Note that if W p2q
RPV is the only source of neutrino mass, our previous limit on M5 ă 1014.8

GeV translates into a lower bound on µ1,

µ1 ą 4 ˆ 10´8GeV1{2 rm1{2µp1 ` tan2 βq1{2{g « 1.5 ˆ 1013GeV . (37)

As discussed in Section 3, the lower limit can be removed if there is another source for

generating neutrino masses that can explain the neutrino oscillation data.

4.2 Limits on λ, λ1, λ2

4.2.1 D “ 4, 5

The quartic couplings in Eq. (28) can lead to either one-to-two processes (involving a scalar

and two fermions) or two-to-two processes (involving four scalars) which violate baryon

and/or lepton number. The rates for these processes taken from Table 1 can be written as

[10]

Γ2Ñ2 “
λ2y2T

128ζp3qπ3
» 2 ˆ 10´4λ2y2T , (38)

Γ1Ñ2 “
λ2m2

0

16ζp3qπT
» 0.016λ2

m2
0

T
, (39)

where λ is a generic RPV quartic coupling in (28) and m0 ă T is the scalar mass. The rate

(38) depends on the Standard Model Yukawa coupling y, because the baryon/lepton number

violating processes actually arise from a cross term in the F -term in the scalar potential.

In weak scale supersymmetry, these processes will be in equilibrium unless λ is quite

small, and the limit on λ is derived by comparing these rates with the Hubble rate. This

yields the limits

λ ă 1.2 ˆ 10´6y´1 2 Ø 2 , (40)

λ ă 1.4 ˆ 10´7 1 Ø 2 , (41)

where we have evaluated the limit at T „ m0 „ Tc in the one-to-two rate.

Once again, in the case of high-scale supersymmetry, when all sparticle masses are greater

than the inflationary scale, the above limits are no longer applicable as there are no sparticles

in the thermal bath at the time when sphaleron interactions are in equilibrium. For the RPV
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Appendix) shows that the dominant contribution arises from �⌫ , leading to the interaction

Lint „ 1

MP

Bµ✓  ̄�µ�L ` h.c. . (5)

In the massless �L limit, the amplitude squared then becomes#1

|M|2 „
m

4

3{2
M

2

P

. (6)

Anticipating that the LHu term will induce a mixing, parameterized by ✏, between �L (or

the Higgsino) and the neutrino (to be discussed in detail below), we can write �L „ ✏ ⌫. The

dominant decay channel is then  µ Ñ ⌫Z{h, with a width

�3{2 „ |M|2
s

m3{2 „ ✏
2
m

3

3{2
M

2

P

. (7)

From the above argument, we can also anticipate that the Goldstino decay to ⌫� will be

suppressed since the photon does not have a longitudinal component. In the detailed cal-

culation the result (7) will be generalized to the non-Abelian, supersymmetric two Higgs

doublet case. In section 5, we will derive limits on ✏ from existing experimental constraints,

requiring in addition, that su�ciently many gravitinos are present today to supply the dark

matter.

3 R-Parity Violation

The simplest model including RPV only introduces a bilinear RPV operator:

W “ WMSSM ` WRPV, (8)

WMSSM “ µHuHd ` yeLHde
c ` yuQHuu

c ` ydQHdd
c
, (9)

WRPV “ µ
1
LHu. (10)

In general the RPV mass parameter µ1 depends on the lepton flavor, but here we omit the

flavor dependence for simplicity (for more detailed discussion, see, e.g., [15]). Note that we

have suppressed all generation indices in both (9) and (10). Since lepton number is no longer

conserved, L and Hd cannot be distinguished in this setup, and thus there is a field basis

#1As will be shown in the Appendix, the piece  ⌫ „ B⌫ {m3{2 leads to |M|2 „ m
2
3{2m

2
A

{M2
P
where mA is

the gauge boson mass, which is highly suppressed when mA ! m3{2.

4

Signatures of decay with R-parity violation

Normally, 

will induce one-to-two processes involving a Higgsino, lepton, and a gauge boson. The

thermally averaged rate at a temperature, T for these lepton number violating interactions

is given by

�1Ñ2 “ g
2
✓
2
T⇡

192⇣p3q » 0.014g2
µ

12

m
2

f

T , (24)

where g is a gauge coupling, and ✓ » µ
12{m2

f
is the mixing angle induced by µ

1 for a

fermion with mass mf . Comparing the interaction rate (24) with the Hubble rate, H »
a
⇡2N{90 T

2{MP , where N is the number of relativistic degrees of freedom at T , gives us

the condition

µ
12 † 56

?
N

T

MP

m
2

f
. (25)

By insisting that any lepton number violating rate involving µ
1 remains out-of-equilibrium

while sphaleron interactions are in equilibrium, i.e., between the weak scale and „ 1012 GeV

(where the latter is determined by comparing the sphaleron rate „ ↵
4

W
T to the Hubble rate),

the limit (25) is strongest for mf „ T , where T is of order the weak scale. For weak scale

supersymmetry, the fermion can be either a lepton or Higgsino, N “ 915{4 and at T „ 100

GeV, one obtains the limit [13]

µ
1 † 2 ˆ 10´5GeV . (26)

For weak scale supersymmetry this limit translates to ✏ À 10´7. This is stronger than the

limit from neutrino masses in weak scale supersymmetry models [15, 21].

In the case of high scale supersymmetry, while the Higgsino cannot be part of the ther-

mal bath, it can still mediate lepton number violating interactions, but the limit on µ
1 is

significantly weaker. For example, the process HH Ø LL will involve two insertions and is

suppressed by the supersymmetry breaking scale. The rate can be estimated as

�2Ñ2 » 10´2
g
4

µ
14

µ4 rm2
T

3
, (27)

where m̃ „ µ is the gaugino mass. Setting �2Ñ2 † H gives us

µ
14 À 200

?
N

µ
4 rm2

TMP

, (28)

This limit should now be applied at the highest temperatures at which sphalerons are in

equilibrium (T „ 1012 GeV), with N “ 427{4. Thus

µ
1 † 2 ˆ 10´7

ˆ
µrm1{2

GeV3{2

˙
GeV . (29)
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from L-violating interactions

High Scale Susy:
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2

f
. (25)

By insisting that any lepton number violating rate involving µ
1 remains out-of-equilibrium

while sphaleron interactions are in equilibrium, i.e., between the weak scale and „ 1012 GeV

(where the latter is determined by comparing the sphaleron rate „ ↵
4

W
T to the Hubble rate),

the limit (25) is strongest for mf „ T , where T is of order the weak scale. For weak scale

supersymmetry, the fermion can be either a lepton or Higgsino, N “ 915{4 and at T „ 100

GeV, one obtains the limit [13]

µ
1 † 2 ˆ 10´5GeV . (26)

For weak scale supersymmetry this limit translates to ✏ À 10´7. This is stronger than the

limit from neutrino masses in weak scale supersymmetry models [15, 21].

In the case of high scale supersymmetry, while the Higgsino cannot be part of the ther-

mal bath, it can still mediate lepton number violating interactions, but the limit on µ
1 is

significantly weaker. For example, the process HH Ø LL will involve two insertions and is

suppressed by the supersymmetry breaking scale. The rate can be estimated as

�2Ñ2 » 10´2
g
4

µ
14

µ4 rm2
T

3
, (27)

where m̃ „ µ is the gaugino mass. Setting �2Ñ2 † H gives us

µ
14 À 200
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N

µ
4 rm2

TMP

, (28)

This limit should now be applied at the highest temperatures at which sphalerons are in

equilibrium (T „ 1012 GeV), with N “ 427{4. Thus

µ
1 † 2 ˆ 10´7

ˆ
µrm1{2

GeV3{2

˙
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x

Ψ

H

H
~

L

ε

Figure 1: Branching ratios (top) and the deviation r (47), from the asymptotic value for

�tot (bottom) with M1 “ M2{2 “ µ “ rm “ 1014 GeV.

where the charge conjugate of the final state and the number of neutrinos are incorporated#6.

Thus the total decay width is given by

�tot »
✏
2
c
2

�
m

3

3{2
16⇡M2

P

, (46)

which is indeed a good approximation for m3{2 Á 1 TeV. Figure 1 (bottom) shows the

#6We have assumed that µ1 is flavor universal.
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deviation of the total decay width from this asymptotic value with M1 “ M2{2 “ µ “
1014 GeV, which is parametrized by

r “ �tot{
˜
✏
2
c
2

�
m

3

3{2
16⇡M2

P

¸
. (47)

Thus, in the large m3{2 limit, the gravitino lifetime is given by

⌧3{2 » 1028
ˆ
0.44 ˆ 10´20

✏c�

˙2 ˆ
1 EeV

m3{2

˙
3

s. (48)

In the next section, we derive a constraint on ✏, by ensuring that a) we have su�cient dark

matter and b) that the decay products do not exceed observational backgrounds.

5 Observational Constraints

5.1 PLANCK Constraints

Cosmological constraints on models with high scale supersymmetry are severe. Indeed,

the only way to produce the gravitino in the early Universe if the supersymmetry break-

ing scale lies above the reheating temperature#7, TRH , is through the exchange of highly

virtual sparticles with Planck-suppressed couplings, such as t-channel processes of the type

G G Ñ G̃ Ñ  µ  µ, with G, G̃ representing the gluon and gluino, respectively [8]. Because

the production rate is doubly Planck-suppressed, the abundance of dark matter produced

from the bath is very limited (proportional to T
7

RH
[8] as in Eq. (2)), requiring a massive

gravitino to compensate its low density. Moreover, it was shown in [7, 9] that considering

reheating processes involving inflaton decay imposes a lower bound on TRH Á 3 ˆ 1010 GeV

implying from Eq.(2) a lower bound on the gravitino mass m3{2 Á 0.2 EeV [7] to respect

PLANCK constraints [32] on the density of cold dark matter.

It is of interest to check this constraint in the context of models with the bilinear R-parity

breaking term in Eq. (10). In the context of high scale supersymmetry,

µ „ rm " µ
1 ñ ✏ “ µ

1
a
µ2 ` µ12 » µ

1

µ
» µ

1

rm . (49)

#7To be more precise, above the maximum temperature of the thermal bath Tmax which is di↵erent from

TRH if one considers non-instantaneous reheating [31].
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Detection?
We can then rewrite Eq.(48):

⌧3{2 » 1028
ˆ

rm
1014 GeV

˙
2

ˆ
0.44 keV

µ1c�

˙
2

ˆ
1 EeV

m3{2

˙
3

s . (50)

One of the interesting features in this framework is that the scale of the gravitino mass

required to obtain the experimentally determined relic abundance from Eq. (2) is around

the PeV-EeV scale (and higher). The decay of a particle with this mass would provide a

smoking gun signature: a monochromatic neutrino from its decay into Z⌫ or h⌫ (Eq. (50))

which could be observed by IceCube [33] or ANITA [34].

Combining the relic density constraint Eq. (2) with Eq. (50), we can eliminate the grav-

itino mass and write#8

µ
1
c� “ 14 keV

ˆ
⌦3{2h2

0.11

˙1{2 ˆ
1028 s

⌧3{2

˙1{2 ˆ
rm

1014 GeV

˙ ˆ
2.0 ˆ 1010 GeV

TRH

˙7{2
. (51)

We see that while the high scale supersymmetry framework does not yield a strong constraint

from lepton number violation (µ1 À µ » rm » 1014 GeV from Eq. (29)) just requiring the

lifetime to exceed the current age of the Universe (⌧U » 4.3 ˆ 1017 s), would give the limit

µ
1 À 20 GeV, for c� » 0.1. However, as we will see below, observational constraints will

actually require a lifetime in excess of 1028 s, which further restricts µ
1 † 140 keV, for

c� » 0.1, as given in Eq. (51).

These limits can be contrasted with those derived in weak-scale supersymmetric models,

where µ
1 † 20 keV from the preservation of the baryon asymmetry as given in Eq.(26). In

the weak scale supersymmetry scenario, gravitinos are singly produced from the thermal

bath and the relic abundance can be expressed as [31, 35]

⌦3{2h
2 » 0.11

ˆ
100 GeV

m3{2

˙ ˆ
TRH

2.2 ˆ 106 GeV

˙ ˆ
M1{2

10 TeV

˙
2

, (52)

where M1{2 is a typical gaugino mass and we have assumed m3{2 ! M1{2. Repeating the

steps outlined above, we can again relate µ
1 to the gravitino lifetime,

µ
1
c� » 1.4 keV

ˆ
10 TeV

rm

˙
2

ˆ
⌦3{2h2

0.11

˙3{2 ˆ
1028 s

⌧3{2

˙1{2 ˆ
2.2 ˆ 106 GeV

TRH

˙3{2
, (53)

#8We have utilized non-instantaneous reheating in solving the complete set of Boltzmann equations [31]

with Tmax “ 100 ˆ TRH
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deviation of the total decay width from this asymptotic value with M1 “ M2{2 “ µ “
1014 GeV, which is parametrized by

r “ �tot{
˜
✏
2
c
2

�
m

3

3{2
16⇡M2

P

¸
. (47)

Thus, in the large m3{2 limit, the gravitino lifetime is given by
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3

s. (48)

In the next section, we derive a constraint on ✏, by ensuring that a) we have su�cient dark

matter and b) that the decay products do not exceed observational backgrounds.

5 Observational Constraints

5.1 PLANCK Constraints

Cosmological constraints on models with high scale supersymmetry are severe. Indeed,

the only way to produce the gravitino in the early Universe if the supersymmetry break-

ing scale lies above the reheating temperature#7, TRH , is through the exchange of highly

virtual sparticles with Planck-suppressed couplings, such as t-channel processes of the type

G G Ñ G̃ Ñ  µ  µ, with G, G̃ representing the gluon and gluino, respectively [8]. Because

the production rate is doubly Planck-suppressed, the abundance of dark matter produced

from the bath is very limited (proportional to T
7

RH
[8] as in Eq. (2)), requiring a massive

gravitino to compensate its low density. Moreover, it was shown in [7, 9] that considering

reheating processes involving inflaton decay imposes a lower bound on TRH Á 3 ˆ 1010 GeV

implying from Eq.(2) a lower bound on the gravitino mass m3{2 Á 0.2 EeV [7] to respect

PLANCK constraints [32] on the density of cold dark matter.

It is of interest to check this constraint in the context of models with the bilinear R-parity

breaking term in Eq. (10). In the context of high scale supersymmetry,

µ „ rm " µ
1 ñ ✏ “ µ

1
a
µ2 ` µ12 » µ

1

µ
» µ

1

rm . (49)

#7To be more precise, above the maximum temperature of the thermal bath Tmax which is di↵erent from

TRH if one considers non-instantaneous reheating [31].
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We can then rewrite Eq.(48):

⌧3{2 » 1028
ˆ

rm
1014 GeV

˙
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ˆ
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˙
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ˆ
1 EeV

m3{2

˙
3

s . (50)

One of the interesting features in this framework is that the scale of the gravitino mass

required to obtain the experimentally determined relic abundance from Eq. (2) is around

the PeV-EeV scale (and higher). The decay of a particle with this mass would provide a

smoking gun signature: a monochromatic neutrino from its decay into Z⌫ or h⌫ (Eq. (50))

which could be observed by IceCube [33] or ANITA [34].

Combining the relic density constraint Eq. (2) with Eq. (50), we can eliminate the grav-

itino mass and write#8

µ
1
c� “ 14 keV

ˆ
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2.0 ˆ 1010 GeV

TRH
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. (51)

We see that while the high scale supersymmetry framework does not yield a strong constraint

from lepton number violation (µ1 À µ » rm » 1014 GeV from Eq. (29)) just requiring the

lifetime to exceed the current age of the Universe (⌧U » 4.3 ˆ 1017 s), would give the limit

µ
1 À 20 GeV, for c� » 0.1. However, as we will see below, observational constraints will

actually require a lifetime in excess of 1028 s, which further restricts µ
1 † 140 keV, for

c� » 0.1, as given in Eq. (51).

These limits can be contrasted with those derived in weak-scale supersymmetric models,

where µ
1 † 20 keV from the preservation of the baryon asymmetry as given in Eq.(26). In

the weak scale supersymmetry scenario, gravitinos are singly produced from the thermal

bath and the relic abundance can be expressed as [31, 35]

⌦3{2h
2 » 0.11

ˆ
100 GeV

m3{2

˙ ˆ
TRH

2.2 ˆ 106 GeV

˙ ˆ
M1{2

10 TeV

˙
2

, (52)

where M1{2 is a typical gaugino mass and we have assumed m3{2 ! M1{2. Repeating the

steps outlined above, we can again relate µ
1 to the gravitino lifetime,

µ
1
c� » 1.4 keV

ˆ
10 TeV

rm

˙
2

ˆ
⌦3{2h2

0.11

˙3{2 ˆ
1028 s

⌧3{2

˙1{2 ˆ
2.2 ˆ 106 GeV

TRH

˙3{2
, (53)

#8We have utilized non-instantaneous reheating in solving the complete set of Boltzmann equations [31]

with Tmax “ 100 ˆ TRH
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Expect about 1 event at 
ANITA every ~100 years.
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events in 3 years



Most of these disappear
particles not in the thermal bath
no D=6 B-L violating operators involving only SM fields

or ϵ À 0.57.

Note that if W p2q
RPV is the only source of neutrino mass, our previous limit on M5 ă 1014.8

GeV translates into a lower bound on µ1,

µ1 ą 4 ˆ 10´8GeV1{2 rm1{2µp1 ` tan2 βq1{2{g « 1.5 ˆ 1013GeV . (37)

As discussed in Section 3, the lower limit can be removed if there is another source for

generating neutrino masses that can explain the neutrino oscillation data.

4.2 Limits on λ, λ1, λ2

4.2.1 D “ 4, 5

The quartic couplings in Eq. (28) can lead to either one-to-two processes (involving a scalar

and two fermions) or two-to-two processes (involving four scalars) which violate baryon

and/or lepton number. The rates for these processes taken from Table 1 can be written as

[10]

Γ2Ñ2 “
λ2y2T

128ζp3qπ3
» 2 ˆ 10´4λ2y2T , (38)

Γ1Ñ2 “
λ2m2

0

16ζp3qπT
» 0.016λ2

m2
0

T
, (39)

where λ is a generic RPV quartic coupling in (28) and m0 ă T is the scalar mass. The rate

(38) depends on the Standard Model Yukawa coupling y, because the baryon/lepton number

violating processes actually arise from a cross term in the F -term in the scalar potential.

In weak scale supersymmetry, these processes will be in equilibrium unless λ is quite

small, and the limit on λ is derived by comparing these rates with the Hubble rate. This

yields the limits

λ ă 1.2 ˆ 10´6y´1 2 Ø 2 , (40)

λ ă 1.4 ˆ 10´7 1 Ø 2 , (41)

where we have evaluated the limit at T „ m0 „ Tc in the one-to-two rate.

Once again, in the case of high-scale supersymmetry, when all sparticle masses are greater

than the inflationary scale, the above limits are no longer applicable as there are no sparticles

in the thermal bath at the time when sphaleron interactions are in equilibrium. For the RPV

14

There are D=6 B-L conserving operators
and limits from p-decay can be derived 

where the relation λ2
ijk “ ´λ2

ikj is imposed by gauge symmetry. By ignoring flavor mixing

in the down-type squark sector, we obtain

O
p1q
1111 “

1

M2
6

pd̄c1PRCūcT
1 qpQT

1C ¨ L1q,
1

M2
6

„
1

rm2

3ÿ

m“1

λ2˚
11mλ

1
11m, (43)

and thus the limit on M6 from Table 2 can be expressed as the following limit on the quartic

coupling
ˇ̌
ˇ̌
ˇ

3ÿ

m“1

λ2˚
11mλ

1
11m

ˇ̌
ˇ̌
ˇ ă 2.3 ˆ 10´5

ˆ
rm

3 ˆ 1013 GeV

˙2

, (44)

which updates the results given in Ref. [62].

4.2.3 D “ 7

Dimension seven operators of the type, qqqlch, are induced by involving trilinear couplings,

i.e., Ad
ijhd ¨ Q̃id̃

c
j and µyd˚

ij h
:
u ¨ Q̃id̃

c
j. Then, we have

L
p1q
7 “ G

p1q
7,ijklpL̄i ¨ hddjqpQT

l C ¨ Qkq, (45)

L
p2q
7 “ G

p2q
7,ijklpL̄i ¨ h:

udjqpQT
l C ¨ Qkq, (46)

with coefficients

G
p1q
7,ijkl » λ1˚

imjpm´2

Q̃
qmm1Ad

m1n1pm´2

d̃c
qn1nλ

2˚
kln, (47)

G
p2q
7,ijkl » λ1˚

imjpm´2

Q̃
qmm1µ˚ydm1n1pm´2

d̃c
qn1nλ

2˚
kln, (48)

respectively, where µ is assumed to be complex. These operators give rise to interaction

rates which scale as

Γ7 » c7pλ1λ2q2
ˆ
A2

rm8

˙
T 7 , (49)

with c7 “ 9{2ζp3qπ5 given in Table 1, and A denotes an A-term. When compared to the

Hubble rate, one sees that the appropriate limit, evaluated at T “ Tsph (case (b)), gives

ˇ̌
ˇ̌
ˇ

3ÿ

m“1

λ1˚
imjλ

2˚
klm

ˇ̌
ˇ̌
ˇ ă 290

ˆ
rm

3 ˆ 1013 GeV

˙4 ˆ
3 ˆ 1013 GeV

|Ad
0|

˙
, (50)

ˇ̌
ˇ̌
ˇ

3ÿ

m,n“1

λ1˚
imjy

d
mnλ

1˚
klm

ˇ̌
ˇ̌
ˇ ă 290

ˆ
rm

3 ˆ 1013 GeV

˙4 ˆ
3 ˆ 1013 GeV

|µ|

˙
, (51)
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Finally:  

Congratulations Pierre!

Good Luck on Phase 2!

Its a tribute that your work remains 
relevant after 30-40 years!


