

J-PET for range monitoring in proton therapy: a feasibility study using GATE

Karol Brzezinski, Damian Borys, Jan Gajewski, Antoni Rucinski And on behalf of the J-PET collaboration

Opengate scientific meeting, November 18th, 2021

PET for range monitoring in proton therapy

From: Zhu and El Fakhri (2013) Theranostics 3 (10)

Protons therapy:

- Less dose to normal tissue
 - Tumor dose escalation
 - Organ at risk (OAR) dose reduction
- More sensitive to deviations
 - Ion range uncertainties
 - Day-to-day variations in patient position
 - Anatomical changes in the patient
- In vivo range verification
 - Positron emission tomography (PET)

Main PET nuclei produced in patient tissue by the proton beam

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
on)15O
02n) ¹⁴ O
ι) ¹³ Ν
2p2n) ¹³ N
on) ¹³ N
n) ¹¹ C
ι) ¹¹ C
2p2n)11C
ւpn) ¹¹ C
p3n) ¹¹ C
2n)10C
n) ³⁰ P
2pn) ^{38g} K

J-PET for range monitoring in proton therapy

PET based on plastic scintillators

- Cheap, light, portable, easy to reconfigure
- 24 modules
- Each with 13 single plastic strips (5x24x500 mm³)
- Compton instead of photoelectric absorption

- A. Single layer barrel 24 modules
- B. Double layer barrel 48 modules
- C. Triple layer barrel 72 modules
- D. Single layer dual-head 12 modules
- E. Double layer dual-head 24 modules
- F. Triple layer dual-head 24 modules

TOF for z position in strip

Patient data and beam model from CCB proton facility

- Validated beam model in GATE
- Patient database with a range tumor sites and volumes
 - 95 head & neck + brain patients treated at CBB with IMPT
 - 2 6 fields per patient
 - Target volumes: 10-1000 cm³
 - From 300 to 12000 pencil beams per field
 - From 2E9 to 7.5E10 primary protons per field
 - Treatment plans
 - CT 3D images

Physical Dose [Gy]

Physical Dose [Gy]

2-stage GATE simulations using patient data

1st stage

Patient irradiation and β + production

- ¹⁵O, ¹⁴O, ¹⁰C, ¹¹C, ³⁰P, ¹³N, ³⁸gK
- Treatment plans (multiple fields)
- Phantom from CT
 - Cropped & rebinned to 2.5mm
 - HU to material definitions
- Introduce shifts of HU (+/- 2%) and patient position (+/-2,4 mm) in x, y, z
- Output: production maps of positronemitting isotopes

2nd stage

PET acquisition

- J-PET geometries
- Phantom from CT
- Treatment isocentre z-component to scanner axial centre
- Activity source calculated from production maps of positronemitting isotopes
- Positron energy spectra defined for each isotope

Image reconstruction

- Iterative methods implemented in CASToR
- Sensitivity map with patient attenuation included
 - $1. \mbox{Simulation}$ of homogeneous activity filling the PET FOV
 - 2.Calculation of attenuation map from CT and position at z-isocentre
 - 3. Backprojection of acquired coincidence data through attenuation map
- Post-reconstruction smoothing (Gaussian with sigma = 1 voxel)
- Stopping criteria: Iteration minimizing NRMSD with emission map

Sensitivity with attenuation

Range measurements

Difficult due to activity from overlapping fields \rightarrow concentrate on last field

• Compare beam's-eye-view 2D maps of range shifts in **dose** and **PET activity** distributions (PET images). Is a shift in **dose** reflected the **PET images**?

Dose range map in BEV (at 70-80% of max)

Implementation

- Workflow is scripted automatized
- Run split Gate simulation using SLURM queue system
- Computer cluster "Ziemowit" (Silesian Univ. of Technology, Gliwice) www.ziemowit.hpc.polsl.pl

- 80 ibm nodes (12cores/node, min. 36GB RAM) old CPU (intel x5650) in total 960 cores
- 28 quanta nodes (20cores/node, 256GB RAM) newer CPU (intel E5-2660v3) in total 560 cores
- 1st stage simulations
 - Ibm node performance : ~ 355 Primary per sec (PPS)
 - Quanta node performance : ~650 PPS (no HT)
 - One field from one patient takes several hours (quite slow)
 - May transition to FRED

Acknowledgments

Keegan McNamara, Damien C. Weber, Antony Lomax, and Carla Winterhalter

from Paul Scherrer Institute

Isotope production maps

Preliminary results for HU variation

