

Keegan McNamara :: PhD student :: Paul Scherrer Institute

Angelo Schiavi, Antoni Rucinski, Jan Gajewski, Karol Brzezinski, Damian Borys, Shubhangi Makkar, Jan Hrbacek, Damien C. Weber, Antony Lomax, and Carla Winterhalter.

Validation of activation calculations during proton therapy in the GPU Monte Carlo code FRED using GATE

Opengate scientific meeting, **November 18**th, **2021**

Swiss National Science Foundation Grant No. CRSII5189969

Range verification in proton therapy

- Positron emitting isotopes are produced during irradiation, e.g. ${}^{16}O + p \rightarrow {}^{15}O + p + n$, Q = -15.7 MeV, $t_{1/2} = 122 \text{ s}$
- Measure resulting activity with a PET detector, verify range, detect interfractional changes

GATE & FRED for proton therapy

- GATE/Geant4 widely accepted accurate Monte Carlo toolkit for medical physics
 - Full physics setup (EM models, nuclear cascade, etc.)
 - CPU based code
 - "Ground truth"
- FRED, optimised for proton therapy, A. Schiavi et al. PMB (2017)
 - Models contributing dose in proton therapy
 - Proton & deuteron tracking
 - Local energy deposition (alphas, heavy ions, etc.)
 - GPU based, x1000 speed up WRT general purpose MC codes

Full physics isotope production

- 1) Decide if an inelastic event occurs (1% of protons per cm)
- 2) If yes: decide which atom in the material it occurs on
- 3) Run nuclear cascade model to determine the outcome of the reaction
- 4) Score the produced β^+ emitters

Pros:

- Accurate physics processes*
- Contains momentum information**
 Cons:
- Slow
- Large number of protons needed

$$p + {}^{12}C \rightarrow d + {}^{11}C$$

- Instead of treating isotope production as a discrete process allow 'build up' $x_0 \sigma_{0 \rightarrow 150}(E_s) l_s N_V$
- Every proton adds a fractional amount of isotope to each voxel
- Takes advantage of GPU parallelism, shaders, memory structure

Pros:

- Very fast
- Smooth, quicker convergence
- Can easily update cross sections
 Cons:
- Missing some physical processes

Isotope production validation

- Neutrons not tracked in Fred, <1% of production
- Compare voxel by voxel

$$\left|\frac{\mu^f - \mu^g}{\sigma^g}\right| < 1$$

- Some small deviations due to differences in proton flux
- Deviations weakly correlated to dose differences

Speed comparison

- Simulation of a full field in a phantom, 4.8×10^{10} protons
- Scoring dose, ¹⁰C, ¹¹C, ¹³N, ¹⁴O, ¹⁵O, ³⁰P, & ³⁸K

Speed comparison

- 108 patient plans, 390 total fields
- All FRED calculations performed on 2 NVIDIA TITAN GPUs:
 - Avg 30 sec/field
 - Avg 3.0×10^7 prim/field
 - Total time 3.3 hours
- All GATE calculations performed on 400 CPU cores:
 - Avg 2.3 hours/field
 - Avg 1.9×10^9 prim/field
 - Total time 38 days

Physics & cross sections

Cross sections extracted from Geant4.10.06.03 (Hadr03)

Wir schaffen Wissen – heute für morgen

Conclusions

- Fred has been validated against Geant4 (GATE) for activation calculations
- Good agreement
- Massive speedup with fewer computational resources required

Outlook

Combined FRED & GATE workflow and detector modelling

