

Search for the • Higgs boson decay to charm quarks • at the ATLAS experiment

Hannah Arnold (Nikihef)

DPhP Seminar, CEA-Saclay November 15, 2021

At the centre of the *Standard Model*

All known elementary particles

Discovered in 2012 as the last missing piece – 50 years after its prediction

Nik hef

The Higgs boson discovered – end of (a long) story?

just the beginning

Quarks Forces Higgs E Leptons

At the centre of the Standard Model

All known elementary particles

Discovered in 2012 as the last missing piece – 50 years after its prediction

Hannah Arnold

All known elementary particles

... describes the dynamics and interactions of **massless** *fermionic* particles (**quarks** and **leptons**) by exchange of **massless** *bosonic* mediators (**gauge bosons**)

All known elementary particles

... describes the dynamics and interactions of **massless** *fermionic* particles (**quarks** and **leptons**) by exchange of **massless** *bosonic* mediators (**gauge bosons**)

BUT

the *W* and *Z* bosons and the charged fermions are massive!

... describes the dynamics and interactions of **massless** *fermionic* particles (**quarks** and **leptons**) by exchange of **massless** *bosonic* mediators (**gauge bosons**)

BUT

the *W* and *Z* bosons and the charged fermions are massive!

Solutions:

- + Brout-Englert-Higgs mechanism
- + Yukawa couplings

All known elementary particles

At the centre of the Standard Model

... describes the dynamics and interactions of **massless** *fermionic* particles (**quarks** and **leptons**) by exchange of **massless** *bosonic* mediators (**gauge bosons**)

BUT

the W and Z bosons and the charged fermions are massive!

Solutions:

- + Brout-Englert-Higgs mechanism
- + Yukawa couplings

All known elementary particles

At the centre of the Standard Model

All known elementary particles

+ self-interaction...

At the centre of the Standard Model

All known elementary particles

 \Rightarrow test by studying the observed Higgs boson's production and decay

At the centre of the Standard Model

All known elementary particles

So far excellent agreement with the prediction!

Hannah Arnold

At the centre of the Standard Model

All known elementary particles

So far excellent agreement with the prediction!

Hannah Arnold

At the centre of the Standard Model

All known elementary particles

Couplings to electrons and 1st and 2nd generation quarks?

Hannah Arnold

At the centre of the Standard Model

All known elementary particles

W and Z bosons ATLAS Preliminary ATI (\longreeneqty (\longreeneqty VKV $\sqrt{s} = 13 \text{ TeV}, 36.1 - 139 \text{ fb}^{-1}$ E K_F V or V AS-CONF-2021-053 $m_H = 125.09 \text{ GeV}, |y_H| < 2.5, p_{_{SM}} = 19\%$ 3rd------ SM Higgs boson 10 quarks 3rd 10^{-2} leptons 3rd 10^{-3} $\overline{m}_{a}(m_{H})$ used for quarks 10 Rel. κ_F or $\sqrt{\kappa_V}$ 1.4 SM prediction 1.2 0.8 10² 10^{-1} 10

Particle mass [GeV]

Coupling to charm quarks?

Hannah Arnold

The Higgs boson coupling to charm quarks

38.9%

0.01%

2.9%

Why is it important to measure it?

Probe of Higgs couplings to 2nd generation quarks – the only viable?

Its smallness in the SM makes it **susceptible** to possible **modifications from potential beyond-the-SM (BSM) models**

Many BSM models **predict modifications of the Higgs couplings to 2nd (and 1st) generation fermions/quarks alone**

 $H \rightarrow cc$ largest contribution to the Higgs-boson width that we have **no evidence for yet**

Hannah Arnold

 $\begin{array}{c} \blacksquare H \to b\bar{b} \\ \blacksquare H \to c\bar{c} \end{array}$

(V) Coupling strength

0.01%

2.9%

Particle mass [GeV]

ATLAS Preliminary

From A. Chisholm @Higgs Hunting 2021

W and Z boson

- Recent VH, H → cc search with the ATLAS detector based on the full Run-2 dataset [ATLAS-CONF-2021-021]
 - Previous and first search [<u>PRL 120 (2018) 211802</u>]:
 - Based on 36 fb⁻¹ of Run-2 data; targets $Z(\rightarrow ll)H(\rightarrow cc)$
 - Observed (expected) upper limit on $\sigma \times BR$: 110 (150) × SM prediction
- HL-LHC projection for *VH*, $H \rightarrow cc$ search based on full Run-2 analysis [<u>ATL-PHYS-PUB-2021-039</u>]
 - Previous projection [ATL-PHYS-PUB-2018-016]: upper limit on σ×BR: 6.3 × SM prediction (w/o systematic uncertainties)
- Complementary approaches to constrain the Higgs-boson coupling to charm quarks

The data

Search for the Higgs decay to c-quarks at ATLAS

Month in Year

Challenge: how to identify $H \rightarrow cc$?

1. Jet reconstruction

- Jet clustering algorithm: **anti**- k_{T} with radius-parameters R = 0.4
- Inputs: Calorimeter energy clusters (EMTopo)
- Calibration of the energy scale:

Hannah Arnold

Challenge: how to identify $H \rightarrow cc$?

2. *c*-jet identification

Challenge: how to identify $H \rightarrow cc H \rightarrow bb$?

Hannah Arnold

Search for the Higgs decay to c-quarks at ATLAS

15/11/21

Nik hef

Challenge: how to identify $H \rightarrow cc$?

Hannah Arnold

Search for the Higgs decay to c-quarks at ATLAS

Nikhef

Current c-tagging strategy: use the algorithms developed for b-tagging, but train with c-jets as signal

Selection of "low-level" b-tagging algorithms

Multivariate analysis techniques used to combine low-level tagger output into final discriminants, e.g. **MV2c10** (BDT-based b-tagger), **DL1c** (DNN based c-tagger)

c-tagging: the $VH(\rightarrow cc)$ strategy

	c-tag eff
c-jets	27%
b-jets	8%
I-jets	1.6%

Dedicated c-tagging:

ii. Optimised for $VH(\rightarrow cc)$ limit

(Average) performance (on ttbar)

For comparison: a typical b-tagging algorithm achieves a b-jet efficiency of ~70% for similar c-/light jet mistag efficiencies!

i. Including b-tag veto \rightarrow orthogonality with VH($\rightarrow bb$)

Hannah Arnold

Search for the Higgs decay to c-quarks at ATLAS

c-tagging: calibrations

Nikhef

Dedicated calibrations for *c*-, *b*- and light-quark jets using "standard" b-tagging calibration methods^(*)

⇒ jet p_T and η dependent data-to-simulation scale factors (per parton shower) ⇒ uncertainties: at most 15%

^(*) Eur. Phys. J. C79(2019) 970, ATLAS-CONF-2018-001, ATLAS-CONF-2018-006

Hannah Arnold

Why *VH*, $H \rightarrow cc$?

Challenge: $H \rightarrow cc$ at the LHC

Hannah Arnold

Search for the Higgs decay to c-quarks at ATLAS

Challenge: $H \rightarrow cc$ at the LHC

Challenge: $H \rightarrow cc$ at the LHC

Categorisation in $\mathbf{p}_{T}(\mathbf{V})$ **and # of jets** \Rightarrow isolate regions with better S/($\sqrt{}$)B

Hannah Arnold

Hannah Arnold

Search for the Higgs decay to c-quarks at ATLAS

Putting things together: $VH(\rightarrow cc)$ analysis strategy II

Background estimate

• From *simulation*

exception: multijet contribution in 1L (negligible in 0/2L (after selection))

- *Truth-flavour tagging* to maximise the statistical power of the samples weight events with the probability of each jet to be c-tagged(+b-tag veto)
- **Systematic uncertainties** from comparisons to alternative samples or simulation settings (acceptances, shapes)
- **Various control regions in data** ⇒ determine normalisation and constrain modelling uncertainties

Profile likelihood fit to extract *three* **signal strengths simultaneously:**

15/11/21

- VH(\rightarrow cc)
- VW(\rightarrow cl), VZ(\rightarrow cc) **(coss-check signals** \Rightarrow validate analysis strategy

Nik

Control regions

Hannah Arnold

Control regions

Summary analysis regions

Courtesy of M. Mironova

Hannah Arnold

Search for the Higgs decay to c-quarks at ATLAS

Summary analysis regions

Courtesy of M. Mironova

Hannah Arnold

Candidate event display: 0L

Hannah Arnold

Search for the Higgs decay to c-quarks at ATLAS

Candidate event display: 1L

2 c-tag m(cc) = 124 GeV

Hannah Arnold

Search for the Higgs decay to c-quarks at ATLAS

Candidate event display: 2L

Hannah Arnold

Search for the Higgs decay to c-quarks at ATLAS

Most sensitive signal regions

Expected signal × 300

Nik hef

Results: signal strengths

Compatibility with the SM: 84%

Good agreement with SM prediction \Rightarrow validation of VH(\rightarrow cc) search strategy

More $VH(\rightarrow cc)$ results

Most stringent limit on $H \rightarrow cc$ to date!

Individual channel results from POI decorrelation (i.e. otherwise fit model unchanged)

- Good agreement between channels •
- **OL most sensitive channel** (high stat. + bkg. Control from 1/2L)

Uncertainties breakdown

Source of uncertainty		$\mu_{VH(c\bar{c})}$
Total		15.3
Statistical		10.0
Systematics		11.5
Statistical uncertaint	ies	
Data statistics only		7.8
Floating normalisations		5.1
Theoretical and mod	lelling uncertainties	
$VH(\rightarrow c\bar{c})$		2.1
Z+jets		7.0
Top-quark		3.9
W+jets		3.0
Diboson		1.0
$VH(\rightarrow b\bar{b})$		0.8
Multi-Jet		1.0
Simulation statistics		4.2
Experimental uncert	ainties	
Jets		2.8
Leptons		0.5
$E_{\mathrm{T}}^{\mathrm{miss}}$		0.2
Pile-up and luminosity		0.3
Flavour tagging	c-jets	1.6
	<i>b</i> -jets	1.1
	light-jets	0.4
	au-jets	0.3
Truth-flavour tagging	ΔR correction	3.3
	^g Residual non-closure	1.7

Statistical and systematic uncertainties are of the same order

Uncertainties on the free-floating background normalisations are considered statistical unc.

Dominant systematic uncertainty: Z+jets modelling

Followed by uncertainties related to the **limited simulated sample sizes**

Interpretation of the result

<u>CERN-2013-004 (2013)</u> Nikhe

κ framework \Rightarrow study potential BSM modifications of the Higgs-boson coupling *strength*

H ------ Higgs-charm coupling modifier $\kappa_c = 1$ in SM

- Modification of the partial decay width by κ_c^2
- Modification of the total Higgs-boson total width, assuming
 - Only decays to SM particles
 - All other coupling-strength modifiers are 1

Neglect modifications to the production because no ggZH parametrisation incl. κ_c is available

Search for the Higgs decay to c-quarks at ATLAS

41

Parametrisation

 $\mu_{VH(c\bar{c})}(\kappa_c) = \frac{\kappa_c^-}{1 + B_{\mu}^{\rm SM}} (\kappa_c^2)$

Best fit value: $\kappa_c = 0$ (because of negative $\mu_{V(H \rightarrow cc)}$)

First direct constraint on κ_c ! @68% CL: $|\kappa_c| < 3.5$ (4.9) obs. (exp.) @95% CL: $|\kappa_c| < 8.5$ (12.3) obs. (exp.)

$VH(\rightarrow cc)$ @ the HL-LHC

Hannah Arnold

The High-Luminosity LHC (HL-LHC)

We're here

44

$VH(\rightarrow cc)$ @ the HL-LHC

Assumptions for the extrapolation of the full Run-2 analysis

- Luminosity increase: ×~22
- Flat CoM cross-section scaling: ×1.10-1.18
- Reduction of most systematic uncertainties by 50%

Uncertainties	Scale Factor
$E_{\mathrm{T}}^{\mathrm{miss}}$	0.5
Lepton	1
Jet	1
Flavour tagging c -, b - and τ -jets	0.5
Flavour tagging light-jets (MV2c10 in VH(bb))	0.5
Flavour tagging light-jets (DL1 in $VH(cc)$)	1.0
Luminosity	0.58
Signal modelling	0.5
Background modelling	0.5
MC statistics	0
Truth-tagging uncertainties ($VH, H \rightarrow c\bar{c}$ only)	0

$qq \rightarrow WH \ (H \rightarrow c\bar{c}/b\bar{b})$	1.10
$qq \rightarrow ZH \left(H \rightarrow c\bar{c}/b\bar{b}\right)$	1.11
$gg \rightarrow ZH (H \rightarrow c\bar{c}/b\bar{b})$	1.18
tī	1 16
$gg \rightarrow ZZ$	1.10
$qq \rightarrow VV$	
V+jets	1.10
single top	

• Uncertainties due to limited simulated sample sizes: negligible (!)

Hannah Arnold

- ⇒ systematic uncertainties are of similar size on the combined signal
- \Rightarrow systematic uncertainties dominating in 0/1L

0L remains the most sensitive channel

Uncertainties breakdown and alternative scenarios

Source of uncerta	ainty	$\Delta u^{c\bar{c}}_{m}$			
Tatal	$\frac{1}{2} \sum_{i=1}^{n} \frac{1}{2} \sum_{i=1}^{n} \frac{1}$				
Total3.21Statistical1.97Suptamention2.52		5.21			
		1.97			
Systematics		2.55			
Statistical uncerta	ainties				
Data statistics only 1.59		1.59	<u> </u>		
Floating normali	Floating normalisations				
Theoretical and r	nodelling unc	ertainties			
$VH, H \rightarrow c\bar{c}$		0.27	,		
Z+jets		1.77			
Top-quark	Top-quark		· · · · ·		
W+jets		0.84	single largest		
Diboson		0.34	contribution		
$VH, H \rightarrow b\bar{b}$		0.29			
Multi-Jet		0.09			
Experimental uno	certainties				
Jets		0.59			
Leptons	Leptons				
$E_{\mathrm{T}}^{\mathrm{miss}}$	E_{T}^{miss}				
Pile-up and luminosity		0.19			
Flavour tagging	<i>c</i> -jets	0.61			
	<i>b</i> -jets	0.16			
	light-jets	0.51			
	τ -jets	0.19			

Alternative scenarios ⇒ **impact on expected limit**

- Signal/background modelling unc. ×2/0.5: -/+10% (×2: no improvement wrt. Run-2)
- Including truth-flavour tagging unc.: 4%
- Including MC statistical unc. assuming they improve as the luminosity: 5%
- **Improved b-(light)-jet rejections** by ×1.5 (3) thanks to the inner detector upgrade (ITk): +10-15% (With the same DL1c tagger) Preliminary!

Hannah Arnold

VH(\rightarrow *cc*) @ the HL-LHC: κ_c constraint

Nik hef

Complementary approaches (attempts?) to constrain the Higgs-charm coupling

Exclusive $H \rightarrow J/\Psi \gamma$ decays

- First proposed in <u>arXiv:1505.03870</u>; BR ~ O(10⁻⁶)
- <u>Pro</u>: does not require c-tagging; sensitive to *sign* and *magnitude* of κ_c
- <u>Cons</u>: **destructive interference** of two amplitudes:

 $H \rightarrow cc$: sensitive κ_c

 \rightarrow Sensitivity to κ_c diluted

Search pioneered by ATLAS in Run 1; updated measurement on partial Run-2 dataset

- Obs. (exp.) upper limit on BR($H \rightarrow J/\Psi\gamma$) @95% C.L.: 117 (100) × SM
- No κ_c interpretation

H

Phys. Lett. B 786 (2018) 134

p_T(H) spectrum

First proposed in **Phys. Rev. Lett.** 118 (2017) 121801

- The p_T(H) spectrum is sensitive to modifications of the sign and magnitude of κ_c (and κ_b) in the **production**
 - <u>Pro</u>: does not require *c*-tagging
 - <u>Cons</u>: indirect (more assumptions)

Approach applied to full Run-2 p_T(H) **differential crosssection measurements** in

- $H \rightarrow ZZ^* \rightarrow 4l$ [Eur. Phys. J. C 80 (2020) 942]
- $H \rightarrow \gamma \gamma [ATLAS-CONF-2019-029]$

$\Rightarrow \kappa_c$ interpretation (simultaneously with κ_b)

(Same assumptions as before: only decays to SM particles are allowed, all other $\kappa = 1$)

κ interpretation from $p_T(4l)$ spectrum

Parameter best fit value

 $\kappa_{c} = -1.1$

 $\kappa_{\rm h} = 0.28$

 $\kappa_{c} = 0.66$

Interpretation Increasing model-dependence Modifications to only $p_{\rm T}^{4\ell}$ shape constraint Modifications to $p_{\rm T}^{4\ell}$ predictions v 12-ATLAS mproving ----- 68% CL $H \rightarrow ZZ^* \rightarrow 4I$ — 95% CL. * SM $\sqrt{s} = 13 \text{ TeV}, 139 \text{ fb}^{-1}$ Best Fit p-value: 0.10

-1.5

 $\kappa_b = 0.55$ [-1.82, 3.34]

and the total width ($\rightarrow BR$)

95% Confidence Interval

[-11.7, 10.5]

[-3.21, 4.50]

[-7.46, 9.27]

...only the production

Modifications affecting

Reminder

V(H→*cc)* [κ_b = 1] @95% CL: $|\kappa_c| < 8.5$ (12.3) obs. (exp.)

Direct and indirect constraints are comparable!

Detailed comparison difficult

1.5

κ_b

Summary and conclusions

- Studying Higgs-charm coupling is among the most important open tasks in current Higgs physics
- Most promising approach to *directly* **probe the charm-Yukawa coupling** at the LHC: *VH*(→*cc*)
- ATLAS' full Run-2 $VH(\rightarrow cc)$ search provides
 - Most stringent limit on $H \rightarrow cc$ to date
 - First direct constraint on charm-Yukawa coupling
 - 'Measurement' of VW/VZ with *c*-tagging
- HL-LHC extrapolation results promising

Hannah Arnold

- Significant work to reduce (modelling) uncertainties necessary
- Measurements of $p_T(H)$ spectra in $H \rightarrow 4l$ (and $H \rightarrow \gamma\gamma$) provide **comparable** *indirect* **constraints on** κ_c

