Real-time User Analysis with the Pitt-Google Alert Broker

Troy Raen University of Pittsburgh | Pitt-Google Collaboration

Low-latency alerts & Data analysis for Multi-messenger Astrophysics | January 14, 2022

Pitt-Google Alert Broker Collaboration

Troy Raen

Lead Developer Grad Student University of Pittsburgh

on behalf of...

Michael Wood-Vasey (PI)

Professor University of Pittsburgh

Christine Mazzola Daher

Grad Student University of Pittsburgh

Ross Thomson Solutions Architect Google

Daniel Perrefort Research Assistant Professor University of Pittsburgh

Pitt-Google Alert Broker

- Selected as a full-stream alert broker for LSST
 - Currently processing and distributing the **ZTF** alert stream
 - In early stage dev. for LIGO / Virgo stream
- Broker operates 100% on Google Cloud
 - Explicitly cloud-based model leverages Google-managed compute and storage services
- Users can easily leverage Google Cloud services for their own analysis and storage and/or move data out of the Cloud

Founding Motivations

- 1. Provide broad public access to the LSST alert stream
 - full stream, curated streams, database catalogs
- 2. Facilitate scientific collaboration with a low barrier to entry

Real-time User Analysis

of MMA streams via

Pitt-Google broker and Google Cloud Platform

Data Resources

Message Streams via Pub/Sub

- Full stream
- Semantically compressed (every alert, but with less data)
- Pure (real/bogus filter)
- Value added:
 - Cross match (e.g., Gaia, AllWISE, Census of the Local Universe)
 - Classification (e.g., SuperNNova (Möller & de Boissière, 2020), variable stars)
- Filtered (e.g., *likely extragalactic*, likely supernovae) Completeness prioritized over purity.

Pub/Sub

- Streaming message service
 - functionally similar to Apache Kafka, but easier to use
- Push to any HTTP endpoint for event-driven processing
 - e.g., Google Cloud Run, AWS Lambda
- Pull from anywhere via APIs (Python, REST, gRPC, CLI, ...)

Catalogs in BigQuery

- Alerts
- DIA Source
- DIA Object
- Value added

BigQuery

- Data warehouse. Relational. SQL access.
- Optimized for complex analytical queries on massive datasets
- Real-time streaming inserts, immediately queryable
- Built-in geographic information system (GIS), useful for cross matching
- TAP/ADQL available

italics = currently available for ZTF

File access from <u>Cloud Storage</u> - complete, original alert packets

Compute on Google Cloud (some options)

Scaling

Runtime environment

successfully processed

Troy Raen | Pitt-Google Alert Broker

Low-Latency Processing

Time delta between:

- **ZTF alert production** at IPAC (Kafka timestamp)
- **Pitt-Google message production** after processing thru the indicated module (Pub/Sub timestamp)

SuperNNova classification

- ~1 sec median latency
- Includes transfer from ZTF, ingestion to Pitt-Google, and 2 previous pipeline modules (running on Cloud Functions)

Cross match with AllWISE catalog in BigQuery

- ~7 sec median latency
- This is worst-case scenario! Cone search for 3 nearest neighbors in AllWISE catalog, stored in an **unoptimized** BigQuery table.

User Access

User Accounts

- Pitt-Google broker ingests data into Google Cloud services (e.g., Pub/Sub, BigQuery).
- Users access data through Google Cloud Platform directly, not through Pitt-Google.

Basics

Need a Google account (e.g., Gmail address) and a free Google Cloud Platform project (~1 min.). See our docs. 0

Data Access Methods

- API access to everything (e.g., Python, Java, REST, CLI, etc.), in and out of the Cloud. Integration example: Pitt-Google's TOM Toolkit plugin -
- Web console
- Easy to move data around within the Google Cloud via Pub/Sub.
 - e.g., Simple to develop and maintain data 0 event-driven pipelines by processing on managed compute services.

Pricing Structure

- There is a **<u>Free-Tier</u>** for most services
- After free-tier, pay-as-you-go and only pay for what you actually use.

User Analysis Cost Estimates

Yearly cost estimate

\$810.88

There are MANY factors at play that will affect the cost.

This is a generous estimate that assumes you process a lot of data each night.

					Operation	Free Tier	Standard Price
	Resource estimates		Usage estimates	Pub/Sub	data delivery	10 GiB / month	\$40 / TiB
Cloud Run	2 CPUs 512 MiB memory		0.5 sec / event				
			10^5 events / night				Nightly cost estimate at
					Nightly data e	stimate	standard price
			Nightly cost estimate		10^5 alerts * 80 kb / alert		
			\$0.67		= 0.0073 TiB		\$0.29
	Operation	Free Tier	Standard Price		Operation		Standard Price
BigQuery	query	1 TB / month	\$5.00 / TB		egress to Euro	ope	\$0.12 / GB
	Nightly data estimate		Nightly cost estimate at standard price		Nightly data estimate		Nightly cost estimate at standard price
	0.25 TB		\$1.25		10^3 alerts * 80) kb / alert	
					= 0.08 GB		\$0.01

<u>Cloud Run pricing</u> | <u>BigQuery Pricing</u> | <u>Pub/Sub pricing</u> | <u>Google Cloud Pricing Calculator</u>

Pitt-Google Alert Broker

Ingesting alert streams into Google Cloud Platform and adding value (e.g., cross matches) such that users can easily take advantage of Google's advanced, big-data technology solutions for themselves.

Will be a full-stream LSST broker.

Currently running **ZTF**. In early dev. stage to run gravitational wave alert streams.

Users can

Compute next to the data without managing servers, VMs, scaling or fault tolerance. **Export the data of interest** (API access to everything).

Troy Raen | Slack @troyraen on LSSTC | Email troy.raen@pitt.edu