
AMPEL is a modular and scalable platform with explicit
provenance tracking, suited for systematically processing large
- possibly complex and heterogeneous - datasets in real-time
or not.

This includes selecting, analyzing, updating, combining,
enriching and reacting to data.

AMPEL: An analysis platform as broker

Jakob Nordin (& the AMPEL team)
Low-latency alerts & Data analysis for Multi-messenger Astrophysics, Jan 13-14 2022

Standard Work-Flow

Retrieve data

Run analysis software

Evaluate result

1

2

Create fig of one
telescope to one
student

3

Retrieve data

Run analysis software

Evaluate result

1

2

3

Data volume
+ Data heterogeneity

I

Analysis complexity
+ Software development

II

Standard Work-Flow : Limited Scalability

Change fig to the big
observatories with
highway to (paniced)
student.

Poorly scalable due to:

Code-To-Data

Established solution in the “big data” era, but challenging to implement in
astrophysics due to splintered research environment.

Code-To-Data

Established solution in the “big data” era, but challenging to implement in
astrophysics due to splintered research environment.

Retrieve data

Run analysis software

Evaluate result

1

2

3

Define expected result

Develop and push software

Connect to data streams

3

2

1

AMPEL is a software framework which fully enables
Code-To-Data in the regime of time-dependent
Astronomy and Astrophysics.

AMPEL consists of:
- A core set of public libraries.
- Scientific analysis units contributed by user teams.
- A live instance hosted by DESY Zeuthen.

Example: POSSIS kilonova search in LIGO
Connect3 2 1Define expected result Software

Goal: Count all ZTF kilonova candidates
compatible with realistic models

Steps:

● Select all alerts within LIGO map

● Fit by POSSIS kilonova models
https://github.com/mbulla/kilonova_models

● Select from intrinsic peak brightness

https://github.com/mbulla/kilonova_models

Example: POSSIS kilonova search in LIGO

Implement analysis:

1. Python class for POSSIS fit

Connect3 2 1Result Develop and Upload Software

Example: POSSIS kilonova search in LIGO

Implement analysis:

1. Python class for POSSIS fit
2. Local test

Connect3 2 1Result Develop and Upload Software

Example: POSSIS kilonova search in LIGO

Implement analysis:

1. Python class for POSSIS fit
2. Local test
3. Distribute

Connect3 2 1Result Develop and Upload Software

Example: POSSIS kilonova search in LIGO

Implement analysis:

1. Python class for POSSIS fit
2. Local test
3. Distribute
4. Request incorporation

with live instance

Connect3 2 1Result Develop and Upload Software

ampel-info [at] desy.de

Example: POSSIS kilonova search in LIGO

Trigger:

1. Find (new) skymap

Connect to data streams3 2 1Result Software

Example: POSSIS kilonova search in LIGO

Trigger:

1. Find (new) skymap
2. Post path through API

Connect to data streams3 2 1Result Software

curl -X 'POST' \
 'https://ampel.zeuthen.desy.de/api/ztf/job/runpossis' \
 -H 'accept: application/json' \
 -H 'Content-Type: application/json' \
 -d '{
 "map":
"https://gracedb.ligo.org/api/superevents/S200112r/files/LALInference.fits.gz",
 "channel": “my_program”,
 "pvalue_limit": 0.9,
}'

123456

Example: POSSIS kilonova search in LIGO

Trigger:

1. Find (new) skymap
2. Post path through API
3. [await processing]

Connect to data streams3 2 1Result Software

curl -X 'GET' \
 'https://ampel.zeuthen.desy.de/api/live/jobstatus/123456 \
 -H 'accept: application/json'

completed

curl -X 'GET' \
 'https://ampel.zeuthen.desy.de/api/live/job/123456/t3/HealpixCorrPlotter \
 -H 'accept: application/json'

Example: POSSIS kilonova search in LIGO

Trigger:

1. Find (new) skymap
2. Post path through API
3. [await processing]
4. Get result

Connect to data streams3 2 1Result Software

curl -X 'GET' \
 'https://ampel.zeuthen.desy.de/api/live/job/123456/t3/HealpixCorrPlotter \
 -H 'accept: application/json'

Example: POSSIS kilonova search in LIGO

Trigger:

1. Find (new) skymap
2. Post path through API
3. [await processing]
4. Get result

Connect to data streams3 2 1Result Software

Full analysis schema:
https://github.com/AmpelProject/Ampel-HU-astro
/blob/v0.8.2-dev/examples/ligo-kilonova.yml

https://github.com/mbulla/kilonova_models
https://github.com/mbulla/kilonova_models

Sample current projects

IceCube + ZTF
29% of alerts followed up

O3 LIGO/Virgo + ZTF
<39%> of enclosed probability

Robotic,
autonomous
follow-up triggers

ZTF SN samples

Further information

Up and running now.

Explore the code: https://ampelproject.github.io/

Try it out: https://github.com/AmpelProject/Ampel-contrib-sample

More about structure/motivation:

Contact us: ampel-info at desy.de, jnordin at physik.hu-berlin.de

https://ampelproject.github.io/
https://github.com/AmpelProject/Ampel-contrib-sample

Summary

AMPEL is a real-time data processing platform
which introduces the Code-To-Data paradigm to
astrophysics.

Science teams develop analysis pipelines locally,
which are then pushed to an AMPEL live
instance.

Pipelines here will be exposed to the full alert
streams from e.g. ZTF, LSST, LIGO/VIRGO,
Ultrasat, IceCube … (as well as user provided
inputs), as well as data archives/releases.

Backup

Heterogeneous data

Combining heterogeneous streams requires standardization. This is naturally
encouraged in a multi-developer, Code-to-Data paradigm and practically enforced
in AMPEL through internal processing tiers.

Define expected result

Develop and push software

Connect to data streams

3

2

1

| 22

“Broker”
Divide an input stream
according to some criteria.

“Supplement”
Annotate stream, e.g.
based on a classifier.

“Join”
Combine different streams.

Multiple stream operations form a full analysis

| 23

Key concepts for a Code-to-Data platform

Information based approach where an analysis program can be specified through four
kinds of questions:

- What input data should be considered?
- How to combine data into compounds?
- What can you derive from compound data?
- Which reactions should be triggered under what conditions?

Each kind of question is addressed through implementation of a specific abstract class
Ampel-core connects, schedules and transfer information between these..

| 24

AMPEL SW structure

Ampel-
core

A.-interface

A.-alerts

A.-photometry

A.-ZTF

Process scheduler and
database interactions.

Abstract classes for
AMPEL integration.

Classes for parsing and
ingesting alert-like input.

Add on for common
photometry properties.

ZTF specific properties.

| 25

Ampel-
core

A.-interface

A.-alerts

A.-photometry

A.-ZTFA.-contrib
User designed units

AMPEL SW structure

26

An analysis schema fully specifies a science
program through specifying which units are
to be run with which parameters.

To be referenced, distributed, tested and/or
developed while applied to real-time,
archived or simulated data.

AMPEL: analysis schema

