Core-collapse supernova neutrinos and the SuperNova Early Warning System

Kate Scholberg, Duke University Low-latency alerts and Data analysis for Multi-messenger Astrophysics January 13, 2022

The core-collapse neutrino signal

When a star's core collapses, ~99% of the gravitational binding energy of the proto-nstar goes into v's of *all flavors* with ~tens-of-MeV energies

(Energy *can* escape via v's) Mostly v-antiv pairs from proto-nstar cooling

Timescale: *prompt* after core collapse, overall Δt ~10's of seconds

The Steady State Neutrino Spectrum @ Earth

Grand Unified Neutrino Spectrum at Earth Edoardo Vitagliano, Irene Tamborra, Georg Raffelt. Oct 25, 2019. 54 pp. MPP-2019-205

e-Print: arXiv:1910.11878 [astro-ph.HE] | PDF

During a ~10s Galactic burst, SN flux can increase 9-10 orders of magnitude

Grand Unified Neutrino Spectrum at Earth Edoardo Vitagliano, Irene Tamborra, Georg Raffelt. Oct 25, 2019. 54 pp. MPP-2019-205 e-Print: arXiv:1910.11878 [astro-ph.HE] I PDF

Expected neutrino luminosity and average energy vs time

Vast information in the *flavor-energy-time profile*

Visible supernova may not show up for hours or days

Multimessenger signals from core collapse

K. Nakamura et al., MNRAS 2016

If we see a neutrino burst... where's the supernova??

Matthew D. Kistler, W. C. Haxton, and Hasan Yüksel. Tomography of Massive Stars from Core Collapse to Supernova Shock Breakout. ApJ, 778:81, 2013, arXiv:1211.6770.

Optical follow-up requirements for the next Galactic supernova

Adapted from Nakamura et al., MNRAS 2016

Current main supernova neutrino detector types

+ some others (e.g. DM detectors)

Future Supernova-Burst-Sensitive Neutrino Detectors

Hyper-Kamiokande 260 kton water Japan

DUNE 40 kton argon USA

JUNO 20 kton scintillator (hydrocarbon) China

Neutrino Pointing Approaches

Triangulation from timing

N. Linzer, KS: arXiv:1909/03151

Lower quality, but can probably get very low latency, with subsequent improvements

The Supernova Early Warning System 1.0

Simple 10-sec coincidence \rightarrow email alert + socket connection +GCN Running in automated mode since 2005 (no nearby CCSNe...)

SNEWS Alert Latency

From A. Habig, M. Strait

Current effort: upgrade to SNEWS 2.0

- improved latency
- neutrino-based pointing, including triangulation
- "fire drills"
- presupernova

snews2.org

Real-time alerts and followup

Collaborating with: SCIMMA (using Hopskotch) (Baxter et al., CoRR, abs/2101.07779) AMON AAVSO, GRANDMA

WUN2K (What You Need To Know)

Core-collapse neutrinos

- ~10 second prompt burst of all flavors, few tens of MeV

Current & near future detectors:

 ~Galactic sensitivity (SK reaches barely to Andromeda)
can get some pointing from neutrinos
SNEWS 1.0 network is waiting, SNEWS 2.0 in near future

Long term future

- huge statistics: extragalactic reach
- richer flavor sensitivity (e.g. v_e in LAr!)
- multimessenger prospects