

PIERRE AUGER OBSERVATORY

GEFÖRDERT VOM

Multi-messenger astrophysics with the Pierre Auger Observatory

Michael Schimp for the Pierre Auger Collaboration

<u>Low-latency alerts & Data analysis for Multi-messenger</u> <u>Astrophysics, Paris/Online</u>

January 13, 2022

The Pierre Auger Observatory

Fluorescence Detector (FD) site **Surface Detector (SD)** station

Water Cherenkov Detector

(WCD)

FD telescope +

+

Engineering Radio Array (AERA)

Underground Muon Detectors

Atmospheric Monitoring

•

1660 SD stations 27 FD telescopes

Michael Schimp

January 13, 2022

(~100% duty cycle)

27 FD telescopes (~15% duty cycle)

Cosmic ray detection

Calorimetric energy measurement with FD

$$E \propto \int \frac{\mathrm{d}E}{\mathrm{d}X} \,\mathrm{d}X$$

SD energy calibration via S_{1000}

Auger Prime

World's largest cosmic ray radio detector array

Electronics upgrade:

40 → 120 MHz sampling, more precise GPS, higher dynamic range, ...

Add **small PMT in WCD** to increase dynamic range

5 yrs runtime: Distinguish $0\% \leftrightarrow 10\%$ protons at highest energies with 5 σ

SSD installed w/ PMT (163 stations)

SSD installed w/o PMT (1268 stations)

no SSD installed (236 stations)

Electronics upgraded (134 stations)

Electromagnetic (EM) \leftrightarrow muonic (μ) component

→ Enhace mass composition measurement

Michael Schimp

January 13, 2022

Multi-messenger activities

- GW follow-up searches with neutrinos and photons
- Photon real-time stream to AMON
- Deeper Wider Faster
- ANITA follow-up searches for upgoing air shower events
- UHECR-neutrino correlation searches (Auger, IceCube, TA)
- Neutrons from the Galaxy

Neutrino detection with the Auger SD

Many cascades

→ Broad signal(t)

Single particles

→ Narrow signal(t)

No neutrino candidates identified so far

- → Limits on
 - Diffuse flux
 - Point source flux
 - Astrophysical and cosmological models
 - Flux from followed-up sources

- Excellent visibility of the merger
- Fast LIGO/Virgo + Fermi GCN circular
- Our follow-up routines were not automatized, manual "unblinding"
 - > Now: **Immediate** search initiation

- No related neutrinos detected by ANTARES, IceCube, and Auger
- Auger sensitivity high for ±500 s but reduced for 14 days
 - Good vs. periodic visibility
 - Lesson: Lucky strikes happen, improved preparation (faster follow up) might pay off in the future

Automatic GW follow-up routine

Data acquisition computer in Malargüe

Update of SD events every 15 min

3 neutrino reconstructions and analyses

Listener for GCN alerts

- Saves GW event info in *.fits format (header + probability skymap)
- Sub-routine keeps looking for neutrino events in 90% CL region for proper follow-up period (in the analysis results produced every 15 minutes)
 - Communicates findings immediately _

Machine readable event info (GCN format)

LIGO/VIRGO Collaboration (LVC) Open Public Alerts (OPAs)

In case of interesting GW event (BNS, mass gap, NSBH): send GCN notice after 24 h

manual human vetting

Automatic mails to Auger collaborators involved with neutrino analyses

Real-time stream of photon-like events to AMON

- → Hugo Alberto Ayala Solares, tomorrow 2:30 p.m.
- Side remark: Auger is already sending SD shower data with certain directional, energy, and quality cuts to AMON
- Work in progress
- Goal: Stream photon-like candidate events from Auger data to AMON via fast estimator(s)
 - MVA for fast and reliable photon discrimination utilizing:
 - Signal risetimes
 - Shower front curvature
 - Station multiplicity
 - Zenith angle

Deeper Wider Faster

→ Jeff Cooke, tomorrow 3 p.m.

Multi-instrument (> 30) project

Radio through ultra-high energies incl. non-photons (Auger)

- ~ 10 groups observe **simultaneously**
 - Deep+wide-field fast (sampling and analysis) multi-wavelength + multimessenger probing of same field

Auger:

- Full-SD events in DWF field of view shared, no significant coincidences found so far
- Future plan: include smaller sub-arrays of Auger for lower energy events

Pierre Auger Observatory Open Data

October 2021 release

The Pierre Auger 2021 Open Data is the public release of 10% of the Pierre Auger Observatory cosmic-ray data presented at the <u>36th International</u> Cosmic Ray Conference held in 2019 in Madison, USA, following the <u>Auger Collaboration Open Data Policy</u>. The release also includes 100% of weather and space-weather data collected until 31 December 2020.

This website hosts the datasets for download. A brief overview of the <u>Pierre Auger Observatory</u> and of the <u>Auger Open Data</u> is set out below. An online event display to explore the released cosmic-ray events, and example analysis codes are provided. An outreach section dedicated to the general public is also available.

Check it out on opendata.auger.org

10% of data released to browse, visualize, and analyze w/ python code examples

Datasets

the released datasets and their complementary data

Visualize

an online look at the released pseudo raw cosmic-ray data

Analyze

example analysis
codes in online
python notebooks
to run on the
datasets

Outreach

a page dedicated to the general public

The End

Follow-up of GW events O3

- LIGO/Virgo switched to open public alerts (OPAs), communicated via GCN
- Previously: MoU to share data with LIGO/Virgo, now we automatically follow-up the OPAs

Neutrino search and identification

- Pre-select inclined and young showers
- Neutrino identification by zenith-dependent event classification
- Crucial variable: Area over Peak (AoP)

Neutrino search and identification

- Pre-select inclined and young showers
- Neutrino identification by zenith-dependent event classification
 - Earth-skimming: <AoP> of all stations in event
 - Down-going: Optimized linear discriminant
 - Combination of AoPs of certain stations (esp. early and late ones)
 - → "Fisher value"

No candidates so far

Neutrino exposure

By direction

By flavor

Enrique Zas, ICRC 2017

Limits on diffuse neutrino flux

Follow-Up of BBH merger GW150914

UHE neutrino sensitivity declination dependent

Newer events: More GW detectors

improved localization by triangulation

total neutrino energy = emitted GW energy

GW151226 Follow-Up—Results

arXiv:1602.06961 (Kotera, Silk):
Binary BHs could produce the measured UHECR flux! $\rightarrow \text{Needs} \sim 3\% \text{ "efficiency" } (E_{\text{UHECR}}/E_{\text{GW}})$

Systematic uncertainties (PRD 91 092008)

Source of systematic	Combined uncertainty band
Simulations	$\sim +4\%, -3\%$
ν cross section and τ E-loss	$\sim +34\%, -28\%$
Topography	$\sim +15\%, 0\%$
Total	$\sim +37\%, -28\%$

Michael Schimp

January 13, 2022

O1 GW Follow-Up

Earth-Skimming v_r Selection

Inclination: $90^{\circ} < \theta < 95^{\circ}$

→ elongated footprint

Michael Schimp

January 13, 2022

"Ground signal speed" ~ c

Reject "muonic" events \rightarrow > 60 % stations ToT triggered

24