

Running Cherenkov telescopes

Matteo Cerruti

Université de Paris Astroparticules et Cosmologie (APC) Low-latency alerts and data analysis for multi-messenger astrophysics

January 13, 2022

Measurement of Cherenkov light produced by the interaction of TeV photons with the Earth's atmosphere

- · Background subtraction & identification of gamma-like showers
- · Estimation of incoming direction and energy
- · Reconstruction of spectra, sky maps, light-curves

- · Energy band: ∼100 GeV 100 TeV
- Energy resolution: ~10% at 1 TeV
- Angular resolution: <0.1° at 1 TeV
- Field of View: 3º 5º

Observational constraints:

1) we observe with DARK sky only

Visibility plot of Mrk 421 from MAGIC site (tevcat.uchicago.edu)

-> Large efforts by all collaborations to extend observations into moonlight.

MAGIC Collaboration 2017

[Dark Hrs]

[537.0]

[411.3]

[285.2]

[143.3]

[0.0]

0.0

VERITAS Collaboration 2017 & 2015

HESS too (no publication yet) FACT camera can observe under moonlight

Observational constraints:

2) the lower the zenith angle, the higher the energies

MAGIC Collaboration 2016

Observational constraints:

3) the Universe is opaque to TeV photons . The more distant, the redder

Most distant published detection:

S30218+35 (z=0.95)

Most distant preliminary detection: GRB 201216C (z=1.1) PKS 0346-27 (z=0.99)

IACTs IN THE MULTI-MESSENGER NEWS

Most significant association (3 σ) of a high-energy (290 TeV) neutrino with an astrophysical source

IACTs IN THE MULTI-MESSENGER NEWS

First multi-messenger campaign on neutron star mergers

8

LIGO-VIRGO+++ 2017
HESS Collaboration 2017

Université de Paris

IACTs IN THE (MULTI-MESSENGER) NEWS

GRBs in the TeV band (not multi-messenger yet)

Fig. 1: Multi-wavelength light curve of GRB 180720B.

Fig. 1: Multi-wavelength light curves of GRB 190114C.

HESS Collaboration 2019 & 2021 MAGIC Collaboration 2019

RECEIVING ALERTS: NEUTRINOS

Follow-up of IceCube alerts:

- public alerts on high-energy single events
- Gamma-ray Follow Up (GFU) program

Automatic repointing if the location is visible during data taking

Otherwise rescheduled on best-effort

RECEIVING ALERTS: GW

Follow-up of gravitational alerts:

- large uncertainty region requires automatic tools to optimize the mapping

RECEIVING ALERTS: GRBs

GRB reaction time

Delay versus observation angle

MAGIC Collaboration ICRC 2019

RECEIVING ALERTS: LST

A new running IACT: CTA - LST1

CTA-LST Collaboration ICRC 2021

120	T_0	T_{90}	Z	Start time	Zerith	Delay	7	Trigger	VHE
	[UTC]	[s]		[UTC]	[deg.]	[s]	1		
GRB 201216C	23:07:31	48.0	1.1	20:57:03	40	79200	1	Swift	\mathbf{Y}^{α}
GRB 210217A	23:25:42	4.2	-	23:40:22	41	880		Swift	N
GRB 210511B	11:26:39	6	-	03:37:54	45	58200	Fer	าเ-GBM	N
IC 210210A	11:53:55	-	-	05:41:54	25	64134	I	eCube	N

SENDING ALERTS

All IACTs have **Real Time Analysis** tools

Significance map in real time and capability to send alerts to the world For bright and out-of-doubts signal reaction time can be fast

MoU among IACTs on pre-defined list of known TeV blazars and pre-defined thresholds

Communication by email among shift crews

Credential Certification: Fabian S. Aussler (fabian anussler@cea.fr,

Subjects: Gamma Ray, >GeV, TeV, VHE, Gamma-Ray Burst

У Tweet

The H.E.S.S. array of imaging atmospheric Cherenkov telescopes was used to carry out follow-up observations of the afterglow of GRB 190829A (Dichiara et al., GCN 25552). At a redshift of z=0.0785 + 10.005 (A.F. Valeev et al., GCN 2555) this is one of the nearest GRBs detected to date. H.E.S.S. Observations started uly 30 at 00:16 UTC (i.e. T=4400), lasted until 3h50 UTC and were taken under good condition. A proliminant sale analysis of the obtained data shows a >5 sigma gamma-ray excess compatible with the direction of GRB190829A. Further analyses of the data are on-going and further H.E.S.S. observations

CONCLUSIONS

All running IACTs have very active transients programs with specific focus on multi-messenger follow-ups

TeV data included in major multi-messenger campaigns in the last years

- * On the receiving part, we can react down to sub-minute time-scales if the alert is received and visible during data taking
- * On the sending part, we rely on real time analysis tools that need validation by humans. Fastest ATel ~4 hours after beginning of data taking

