Athena in the context of the multimessenger era

Alexis Coleiro - APC / Université de Paris

Low-latency alerts & Data analysis for Multi-messenger Astrophysics | January 13th, 2021

Outline

- Athena scientific goals and mission profile
- High-energy counterpart to NS-NS mergers
- High-energy counterparts of SMBH mergers / synergies with LISA
- Synergies with neutrino facilities & CTA

Jutline

- Athena scientific goals and mission profile
- High-energy counterpart to NS-NS mergers
- High-energy counterparts of SMBH mergers / synergies with LISA
- Synergies with neutrino facilities & CTA

https://arxiv.org/pdf/2110.15677.pdf

Multi-messenger-Athena Synergy White Paper Multi-messenger-Athena Synergy Team

3

Scientific goals of ATHENA

- Athena selected in 2014 as next large mission of ESA's Cosmic Vision program
- Launch expected in 2033
- Key Questions:
 - How does ordinary matter assemble into the large-scale structures we see today?
 - How do black holes grow and shape the Universe?
- An observatory:
 - Observatory science across all corners of astrophysics
 - Fast ToO response (<4 hours) capability to study transient sources
- ~2/3rd of the time during nominal operations open to the community

Scientific goals of ATHENA

- Athena selected in 2014 as next large mission of ESA's Cosmic Vision program
- Launch expected in 2033
- Key Questions:
 - How does ordinary matter assemble into the large-scale structures we see today?
 - O How do black holes grow and shape the Universe?
- An observatory:
 - Observatory science across all corners of astrophysics
 - Fast ToO response (<4 hours) capability to study transient sources
- ~2/3rd of the time during nominal operations open to the community

Scientific goals of ATHENA

Mission profile

Willingale et al, 2013 arXiv1308.6785

Silicon Pore Optics: 1.4-2 m² at 1 keV 5 arcsec HEW Focal length: 12m Sensitivity: 3 10⁻¹⁷ erg cm⁻² s⁻¹

Wide Field Imager: ΔE: 125 eV Field of View: 40 arcmin High countrate capability

Rau et al. 2013 arXiv1307.1709

Athena: a large effective area mission

GRB and compact object mergers

HST

Chandra

XMM-Newton

Troja, et al., Nature, 2017, 551, 71

Troja et al., 2018, MNRAS, 478, 18

D'Avanzo, et al., 2018, A&A 613, L

- X-ray counterpart consistent with a short GRB viewed off axis.
- X-ray lightcurve unveils dynamics and geometry of the ejecta and are crucial for modeling the system

Off-axis observer

- Nature of the merger remnant?
- X-ray observations could break the degeneracy between neutron star/magnetar and black hole
- A long-lived NS might affect X-ray emission either through X-ray flares of long-lasting X-ray plateau

GRB and compact object mergers

• X-ray probe:

- Jet: GRB afterglow
- Isotropic features: off-axis (orphan) afterglow and cocoon

ATHENA will:

- Probe a variety of viewing angles (population studies, jet structures, constraints on Hubble constant, ...)
- Constrain jet geometry and orientation
- Probe the relation between jet's orientation (EM) and binary's inclination (GW)
- Determine the rate of chocked jets/uncollimated sources
- Break NS/BH remnant degeneracy

Troja et al., 2020, MNRAS, 498, 5643

Synergies with LISA: supermassive black hole mergers

- LISA: in operation in ~2030'
- Low frequency gravitational waves (0.1 mHz 1 Hz)
- Monitoring of the distances between 3 spacecrafts
- Sky localization from 100 deg² to < 1 deg² (improves when the binary gets close to the merger)
- Unique opportunity to probe behaviors of matter in the variable space-time induced by the merging black holes
- Study speed of gravity (phase correlation of the GW and the X-ray time modulated) signal)
- Hubble constant measurement to $z \le 2$ (GW give luminosity, EM provide redshift)
- Unique opportunity to probe AGN physics (onset of relativistic jets, formation of corona, ...)
- Huge discovery space
- Could ATHENA detect and follow-up counterparts to LISA mergers ?

Synergies with LISA: supermassive black hole mergers

- LISA will detect mergers up to z~20
- Athena might detect in a few ks z<2 black holes (3/yr detected by LISA)
- Challenge: distinguish mergers from isolated AGN
- X-ray emission during the late stages of the inspiral (days to hours before final merger) from:

O Circumbinary disc: X-ray emission in UV/soft x-rays (\leq 1keV) O Minidisks around BH: soft to hard X-ray emission (≥ 10 keV) from accretion coronae

- X-ray emission might show clear modulation on timescales as **short as a few hours** linked to orbital period and in-spiral (late) phases but a lot of unknowns (X-ray obscuration, modulation, ...)
- Key element: sky localization by LISA (ideally 0.4 deg² a few hours prior to coalescence)
- Exact joint ATHENA/LISA observing strategies to be designed

12

Particle/cosmic-ray acceleration in the Universe

Synergies with neutrino telescopes (KM3NeT, IceCube, Baïkal GVD) & CTA

- Neutrinos are signature of accelerated relativistic hadrons
- X-ray / gamma-ray and neutrinos allow to disentangle non-thermal leptonic and hadronic populations to probe:
 - The origin of Galactic/extragalactic cosmic rays
 - The nature of relativistic jets in blazars
 - The ultra-fast outflows in AGN Ο
 - Accretion shocks in cluster of galaxies
 - Sites of shock acceleration of Galactic cosmic rays (SNR, pulsars, PWN)

Energies and rates of the cosmic-ray particles

Particle/cosmic-ray acceleration in the Universe

- 0506+056 in 2017.
- interact.

Soft X-ray flux constrains hadronic component

Particle/cosmic-ray acceleration in the Universe

Supernova remnants: hadronic vs leptonic acceleration?

Leptons: synchrotron emission / hadronic: pion decay

Gamma-rays: not always possible to disentangle leptonic vs hadronic processes

Constrain hadronic processes:

- **O** Need background density estimate \rightarrow thermal X-ray observations
- **O** Need magnetic field intensity \rightarrow X-ray filament width

O Line broadening at the edge of the SNR: $T_{ion} \rightarrow cosmic ray$ acceleration efficiency

Decourchelle et al., 2013

Conclusions

- Athena will be an observatory impacting all fields of astronomy
- Over-performs any existing or planned X-ray mission
- Rapid ToO response and quick agility well tuned for multi-messenger astronomy
- NS-NS merger events (synergies with ground-based GW interferometers)
 - Detect jets at all orientation, determine demography of chocked jets and uncollimated sources
 - Constrain off-axis jet geometry
 - Constrain fundamental physics of particle-shock acceleration
- Synergies with neutrino telescopes and CTA
 - Disantangle leptonic vs hadronic populations in AGN relativistic jets and sites of cosmic-ray acceleration
- SMBH merger events (synergies with LISA)
 - Potentiality of studying the behavior of matter in variable space-time
 - Witness the post-merger onset of AGN activity (corona, jets, ...)
 - Huge discovery space ... but real challenge

More information at https://arxiv.org/pdf/2110.15677.pdf

